This data is culled from the site COVID County Data and shows the daily recordation of the total number of cases and deaths from COVID-19 for each locality in Virginia. Dates covered: 1/21/2020 through 9/14/2020 (last update).
As of July 7, 2022, there have been 2,030,370 deaths across the whole of Europe due to COVID-19 since the first recorded European death in France and Spain on February 15, 2020. The United Kingdom currently has the highest number of deaths in Western Europe, and has recorded 180,718 coronavirus deaths as of July 7. In Italy, there have been 168,770 confirmed deaths as a result of COVID-19.
The number of confirmed cases of COVID-19 in Europe was approximately 218.7 million as of June 12, 2022, with France being the worst affected country at over 29.9 million cases. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States recorded 1127152 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 103436829 Coronavirus Cases. This dataset includes a chart with historical data for the United States Coronavirus Deaths.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Background : Substantial differences between countries were observed in terms of Covid-19 death tolls during the past two years. It was of interest to find out how the epidemiologic and/or demographic history of the population may have had a role in the high prevalence of the Covid-19 in some countries. Objective : This observational study aimed to investigate possible relations between Covid-19 death numbers in 39 countries and the prepandemic history of epidemiologic and demographic conditions. Methods : We sought the Covid-19 death toll in 39 countries in Europe, America, Africa, and Asia. Records (2019) of epidemiologic (Cancer, Alzheimer's disease) and demographic (natality, mortality, and fetility rates, percentage of people aged 65 and over) parameters as well as data on alcohol intake per capita were retrieved from official web pages. Data was analysed by simple linear or polynomial regression by the mean of Microsoft Excell software (2016). Results : When Covid-19 death numbers were plotted against the geographic latitude of each country, a bell-shaped curve was obtained for both the first and second years (coefficient of determination R2=0.38) of the pandemic. In a similar manner, bell-shaped curves were obtained when latitudes were plotted against the scores of (cancer plus Alzheimer's disease, R² = 0,65,), the percentage of advanced age (R² = 0,52,) and the alcohol intake level (R² = 0,64,). Covid-19 death numbers were positively correlated to the scores of (cancer plus Alzheimer's disease) (R2= 0.41, P= 1.61x10-5), advanced age (R2= 0.38, P= 4.09x10-5) and alcohol intake (R2= 0.48, P= 1.55x10-6). Instead, inverted bell-shaped curves were obtained when latitudes were plotted against the birth rate/mortality rate ratio (R² = 0,51) and the fetility rate (R² = 0,33). In addition, Covid-19 deaths were negatively correlated with the birth rate/mortality rate ratio (R2= 0.67) and fertility rate (R2= 0.50). Conclusion : The results show that the 39 countries in both hemisphers in this study have different patterns of epidemiologic and demographic factors, and that the negative history of epidemiologic and demographic factors of the northern hemisphere countries, as well as their high alcohol intake, were very correlated with their Covid-19 death tolls. Hence, also nutritional habits may have had a role in the general health status of people in regard to their immunity against the coronavirus.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
In 2020, there were around ******* deaths in the United States caused by COVID-19, compared to ******* COVID-19 deaths in 2021. This statistic shows the total number of deaths due to COVID-19 in the United States in 2020, 2021, and 2022.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
As of January 6, 2022, an average of 1,192 people per day have died from COVID-19 in the U.S. since the first case was confirmed in the country on January 20th the year before. On an average day, nearly 8,000 people die from all causes in the United States, based on data from 2019. Based on the latest information, roughly one in seven deaths each day were related to COVID-19 between January 2020 and January 2022. However, there were even days when more than every second death in the U.S. was connected to COVID-19. The daily death toll from the seasonal flu, using preliminary maximum estimates from the 2019-2020 influenza season, stood at an average of around 332 people. We have to keep in mind that a comparison of influenza and COVID-19 is somewhat difficult. COVID-19 cases and deaths are counted continuously since the begin of the pandemic, whereas flue counts are seasonal and often less accurate. Furthermore, during the last two years, COVID-19 more or less 'replaced' the flu, with COVID-19 absorbing potential flu cases. Many countries reported a very weak seasonal flu activity during the COVID-19 pandemic. But it has yet to be seen how the two infectious diseases will develop side by side during the winter season 2021/2022 and in the years to come.
Symptoms and self-isolation COVID-19 and influenza share similar symptoms – a cough, runny nose, and tiredness – and telling the difference between the two can be difficult. If you have minor symptoms, there is no need to seek urgent medical care, but it is recommended that you self-isolate, whereas rules vary from country to country. Additionally, rules depend on someone's vaccination status and infection history. However, if you think you have the disease, a diagnostic test can show if you have an active infection.
Scientists alert to coronavirus mutations The genetic material of the novel coronavirus is RNA, not DNA. Other notable human diseases caused by RNA viruses include SARS, Ebola, and influenza. A continual problem that vaccine developers encounter is that viruses can mutate, and a treatment developed against a certain virus type may not work on a mutated form. The seasonal flu vaccine, for example, is different each year because influenza viruses are frequently mutating, and it is critical that those genetic changes continue to be tracked.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
After observing many naive conversations about COVID-19, claiming that the pandemic can be blamed on just a few factors, I decided to create a data set, to map a number of different data points to every U.S. state (including D.C. and Puerto Rico).
This data set contains basic COVID-19 information about each state, such as total population, total COVID-19 cases, cases per capita, COVID-19 deaths and death rate, Mask mandate start, and end dates, mask mandate duration (in days), and vaccination rates.
However, when evaluating a pandemic (specifically a respiratory virus) it would be wise to also explore the population density of each state, which is also included. For those interested, I also included political party affiliation for each state ("D" for Democrat, "R" for Republican, and "I" for Puerto Rico). Vaccination rates are split into 1-dose and 2-dose rates.
Also included is data ranking the Well-Being Index and Social Determinantes of Health Index for each state (2019). There are also several other columns that "rank" states, such as ranking total cases per state (ascending), total cases per capita per state (ascending), population density rank (ascending), and 2-dose vaccine rate rank (ascending). There are also columns that compare deviation between columns: case count rank vs population density rank (negative numbers indicate that a state has more COVID-19 cases, despite being lower in population density, while positive numbers indicate the opposite), as well as per-capita case count vs density.
Several Statista Sources: * COVID-19 Cases in the US * Population Density of US States * COVID-19 Cases in the US per-capita * COVID-19 Vaccination Rates by State
Other sources I'd like to acknowledge: * Ballotpedia * DC Policy Center * Sharecare Well-Being Index * USA Facts * World Population Overview
I would like to see if any new insights could be made about this pandemic, where states failed, or if these case numbers are 100% expected for each state.
ABSTRACT Background : The Covid-19 pandemic has caused very high death tolls across the world in the last two years. Geographic latitude, climate factors, and other human related conditions such as epidemiologic and demographic history are taught to have played a role in the prevalence of Covid-19. Objective : This observational study aimed to investigate possible relations between geographic latitude-associated climate factors and Covid-19 death numbers in 29 countries. The study also aimed to investigate the relationship between geographic latitude and the history of epidemiologic (cancer, Alzheimer's disease) and demographic factors (birth rate, mortality rate, fertility rate, people aged 65 and over), as well as alcohol intake habits. And finally, the study also aimed to evaluate the relationships between epidemiologic and demographic factors, as well as alcohol intake habits with Covid-19 deaths. Methods : We sought the Covid-19 death toll in 29 countries in Europe, Africa, and the Middle East (located in both hemispheres and between the meridian lines "-15°" and "+50°"). We obtained the death numbers for Covid-19 and other geographic (latitude, longitude) and climate factors (average annual temperature, sunshine hours, and UV index) and epidemiologic and demographic parameters as well as data on alcohol intake per capita from official web pages. Based on records of epidemiologic and demographic history, and alcohol intake data, we have calculated a General Immune Capacity (GIC) score for each country. Geographic latitude and climate factors were plotted against each of Covid-19 death numbers, epidemiologic and demographic parameters, and alcohol intake per capita. Data was analysed by simple linear regression or polynomial regression. All statistical data was collected using Microsoft Excell software (2016). Results : Our observational study found higher death numbers in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line and low latitudes. When the Covid-19 death numbers were plotted against the geographic latitude of each country, an inverted bell-shaped curve was obtained (coefficient of determination R2=0.553). In contrast, bell-shaped curves were obtained when latitude was plotted against annual average temperature (coefficient of determination R2= 0.91), average annual sunshine hours (coefficient of determination R2= 0.79) and average annual UV index (coefficient of determination R2= 0.89). In addition, plotting the latitude of each country against the General Immune Capacity score of each country gave an inverted bell-shaped curve (coefficient of determination R2=0.755). Linear regression analysis of the General Immune Capacity score of each country and its Covid-19 deaths showed a very significant negative correlation (coefficient of determination R² = 0,71, p=6.79x10-9). Linear regression analysis of the Covid-19 death number plotted against the average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations with the following coefficients of determination: (R2 = 0.69, p = 1.94x10-8), (R2 = 0.536, p = 6.31x10-6) and (R2 = 0.599, p = 8.30x10-7), respectively. Linear regression analysis of the General Immune Capacity score of each country plotted against its average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations, with the following coefficients of determination: (R2 = 0.86, p = 3.63x10-13), (R2 = 0.69, p = 2.18x10-8) and (R2 = 0.77, p= 2.47x10-10), respectively. Conclusion : The results of the present study prove that at certain geographic latitudes and their three associated climate parameters are negatively correlated to Covid-19 mortality. On the other hand, our data showed that the General Immune Capacity score, which includes many human related parameters, is inversely correlated to Covid-19 mortality. Likewise, geographic location and health and demographic history were key elements in the prevalence of the Covid-19 pandemic in a given country. On the other hand, the study points to the possible protective role of UV light against Covid-19. The therapeutic potential of UV light against the Covid-19 associated with SARS-Cov-2 is discussed.
ABSTRACT Introduction: Studies suggest the association between antibody production and the severity of coronavirus disease 2019 (Covid-19). Objectives: To evaluate the concentrations of immunoglobulins class A (IgA) and class G (IgG) during the hospitalization period of Covid-19 patients according to the outcome (survival vs death). Materials and methods: Patients with severe acute respiratory syndrome of coronavirus 2 (Sars-CoV-2) infection confirmed by reverse transcriptase reaction followed by polymerase chain reaction (RT-PCR) were included in this prospective study. Samples were obtained weekly during the follow-up of individuals, considering symptom onset. Titers of anti-Sars-CoV-2 IgA and IgG were measured using a commercial immunoassay. Correlations between IgA/IgG and cycle threshold (Ct) values for N1 and N2 target genes were also assessed. Results: We studied 55 Covid-19 patients (59.7±16.2 years, 63.6% male), of which 28 (50.9%) died. We observed IgA and IgG positivity (IgA+ and IgG+) in 90.9% and 80% of patients, respectively. The highest IgA+ frequency was observed at weeks 2 and 3 and the highest IgG+ at weeks 3 and 4. It is important to note that patients who died presented lower IgA titers in the first two weeks (p < 0.05); however, a significant increase in IgA levels was observed in the subsequent weeks. Lastly, we identified that significant correlations between Ct values and immunoglobulins levels, both IgA and IgG were correlated with Ct N2 in patients who died. Conclusion: Our results suggest that lower IgA titers in early Covid-19, which is associated with lower Ct values, may indicate patients at higher risk for death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecasts are available from 2020-04-01 to 2021-10-20 for dozens to more than 200 geographic entities (GE) across the world (from 46 GE on 2020-04-01 to 246 GE on 2021-10-20).
Each forecast of cumulative mortality is grounded on a probabilistic mixture of mortality trajectories of ahead-of-time geographic entities playing the role of real-life predictors eventually complemented by a parametric model based on a SIR representation. The methodology is presented in Soubeyrand, Ribaud et al. (2020, https://doi.org/10.1371/journal.pone.0238410) and Soubeyrand, Demongeot et al. (2020, https://doi.org/10.1016/j.onehlt.2020.100187).
The forecast are daily implemented by a web application entitled "COVID-19 Visualization" available at https://shiny.biosp.inrae.fr/app_direct/mapCovid19/
The original code is available here: https://gitlab.paca.inrae.fr/biosp/shinyMapCovid19
Raw data for drawing the forecast are provided by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE; https://systems.jhu.edu/) available at https://github.com/CSSEGISandData/COVID-19/ (Dong et al., 2020, https://doi.org/10.1016/S1473-3099(20)30120-1).
Information about the data set and the code are provided in the readme.txt file.
Data are provided in the forecast_data.rds file produced originally with the saveRDS() function of the R Statistical Software (https://cran.r-project.org/).
A code for loading the data set and extracting some data corresponding to specific dates and geographic entities with the R Statistical Software is provided in the read_data.R file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Carolina COVID-19 policies abbreviated timeline.
From around 1334 to 1353, the Black Death claimed the lives of between ** and *** million people worldwide, making it the deadliest disease outbreak in human history. Although the exact death toll from the COVID-19 pandemic is difficult to judge, sources such as the World Health Organization (WHO) and the Economist estimate that as of May 2024, between ** and ** million people may have lost their lives due to COVID-19. However, as of June 2025, the WHO reported just over ***** million confirmed deaths due to COVID-19 worldwide. This statistic presents the number of deaths from the deadliest pandemics/epidemics in history.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe recent emergence and rapid global spread of coronavirus disease 2019 (COVID-19) is leading to public health crises worldwide. Alcohol consumption and cigarette smoking (CS) are two known risk factors in many diseases including respiratory infections.MethodsWe performed a multi-center study in the four largest hospitals designated for COVID-19 patients in Wuhan. There are totally 1547 patients diagnosed with COVID-19 enrolled in the study, alcohol consumption and CS history were evaluated among these patients. The epidemiology, laboratory findings and outcomes of patients contracted COVID-19 were further studied.ResultsOur findings indicated that COVID-19 patients with a history of CS tend to have more severe outcomes than non-smoking patients. However, alcohol consumption did not reveal significant effects on neither development of severe illness nor death rates in COVID-19 patients.ConclusionCS is a risk factor for developing severe illness and increasing mortality during the SARS-CoV-2 infection. We believe that our findings will provide a better understanding on the effects of alcohol intake and CS exposure in COVID-19 patients.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: Multiple risk factors of mortality have been identified in patients with COVID-19. Here, we sought to determine the effect of a history of neurological disorder and development of neurological manifestations on mortality in hospitalized patients with COVID-19.Methods: From March 20 to May 20, 2020, hospitalized patients with laboratory confirmed or highly suspected COVID-19 were identified at four hospitals in Ohio. Previous history of neurological disease was classified by severity (major or minor). Neurological manifestations during disease course were also grouped into major and minor manifestations. Encephalopathy, ischemic or hemorrhagic stroke, and seizures were defined as major manifestations, whereas minor neurological manifestations included headache, anosmia, dysgeusia, dizziness or vertigo, and myalgias. Multivariate logistic regression models were used to determine significant predictors of mortality in patients with COVID-19 infection.Results: 574/626 hospitalized patients were eligible for inclusion. Mean age of the 574 patients included in the analysis was 62.8 (SD 17.6), with 298 (51.9%) women. Of the cohort, 240(41.8%) patients had a prior history of neurological disease (HND), of which 204 (35.5%) had a major history of neurological disease (HND). Mortality rates were higher in patients with a major HND (30.9 vs. 15.4%; p = 0.00002), although this was not a significant predictor of death. Major neurological manifestations were recorded in 203/574 (35.4%) patients during disease course. The mortality rate in patients who had major neurological manifestations was 37.4% compared to 11.9% (p = 2 × 10−12) in those who did not. In multivariate analysis, major neurological manifestation (OR 2.1, CI 1.3-3.4; p = 0.002) was a predictor of death.Conclusions: In this retrospective study, history of pre-existing neurological disease in hospitalized COVID-19 patients did not impact mortality; however, development of major neurological manifestations during disease course was found to be an independent predictor of death. Larger studies are needed to validate our findings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: The timeline of the COVID-19 pandemic began on December 31, 2019, in China, with SARS-CoV-2 identified as the etiological agent. This article aims to describe the COVID-19 epidemic’s spatial and temporal dynamics in the first hundred days in the State of Pernambuco, Brazil. We present the evolution in cases and deaths according to epidemiological weeks. We analyzed the series of accumulated daily confirmed COVID-19 cases, with projections for the subsequent 15 days, using the JoinPoint app. This software allows identifying turning points, testing their statistical significance. We also analyze the trend in the spread of COVID-19 to the interior of the state, considering the percent distribution of cases in the state capital, Recife, municipalities in Greater Metropolitan Recife, and the state’s interior, by sets of three weeks, constructing thematic maps. The first hundred days of the COVID-19 epidemic resulted in 52,213 cases and 4,235 deaths from March 12, or epidemiological week 11, until June 20, 2020 (epidemiological week 25). The peak in the epidemic curve occurred in epidemiological week 21 (May 23), followed by deceleration in the number of cases. We initially detected the spread of cases from the city center to the periphery of the state capital and Metropolitan Area, followed by rapid spread to the state’s interior. There was a decrease in the mean daily growth starting in April, but with an average threshold of more than 6,000 weekly cases of COVID-19. At the end of the period, the state’s case series indicates the persistence of SARS-CoV-2 circulation and community transmission. Finally, paraphrasing Gabriel Garcia Marques in One Hundred Years of Solitude, we ask whether we are facing “a pause in the storm or a sign of redoubled rain”.
The new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.
Fast-moving epidemic
In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.
Key moments in the Chinese coronavirus timeline
The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19 exposure and status at death/discharge among hematological malignancies patients stratified on outcome (n = 107).
As of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
This data is culled from the site COVID County Data and shows the daily recordation of the total number of cases and deaths from COVID-19 for each locality in Virginia. Dates covered: 1/21/2020 through 9/14/2020 (last update).