100+ datasets found
  1. F

    France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population [Dataset]. https://www.ceicdata.com/en/france/health-statistics/fr-mortality-rate-attributed-to-unintentional-poisoning-male-per-100000-male-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    France
    Description

    France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data was reported at 0.300 Ratio in 2016. This records a decrease from the previous number of 0.400 Ratio for 2015. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data is updated yearly, averaging 0.400 Ratio from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 0.500 Ratio in 2000 and a record low of 0.300 Ratio in 2016. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s France – Table FR.World Bank: Health Statistics. Mortality rate attributed to unintentional poisonings is the number of male deaths from unintentional poisonings in a year per 100,000 male population. Unintentional poisoning can be caused by household chemicals, pesticides, kerosene, carbon monoxide and medicines, or can be the result of environmental contamination or occupational chemical exposure.; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  2. T

    Libya - Suicide Mortality Rate (per 100,000 Population)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Libya - Suicide Mortality Rate (per 100,000 Population) [Dataset]. https://tradingeconomics.com/libya/suicide-mortality-rate-per-100000-population-wb-data.html
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Libya
    Description

    Suicide mortality rate (per 100,000 population) in Libya was reported at 5 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Libya - Suicide mortality rate (per 100,000 population) - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.

  3. U

    United States US: Suicide Mortality Rate: per 100,000 Population

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Suicide Mortality Rate: per 100,000 Population [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-suicide-mortality-rate-per-100000-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2015
    Area covered
    United States
    Description

    United States US: Suicide Mortality Rate: per 100,000 Population data was reported at 15.300 Number in 2016. This records an increase from the previous number of 15.000 Number for 2015. United States US: Suicide Mortality Rate: per 100,000 Population data is updated yearly, averaging 13.200 Number from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 15.300 Number in 2016 and a record low of 11.300 Number in 2000. United States US: Suicide Mortality Rate: per 100,000 Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  4. Deaths per 100,000 inhabitants due to PM2.5 pollution in Europe 2005-2022,...

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths per 100,000 inhabitants due to PM2.5 pollution in Europe 2005-2022, by country [Dataset]. https://www.statista.com/statistics/1455177/europe-particle-pollution-deaths-per-population-by-country/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    The number of premature deaths per 100,000 habitants attributable to PM2.5 exposure above WHO guidelines fell across all European countries between 2005 and 2022. The highest mortality rates in 2022 were typically observed in Eastern European countries. This is due to factors such as the dependency of coal power plants in the region, as well as burning solid fuels for domestic heating.

  5. M

    Mali ML: Suicide Mortality Rate: per 100,000 Population

    • ceicdata.com
    Updated Oct 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Mali ML: Suicide Mortality Rate: per 100,000 Population [Dataset]. https://www.ceicdata.com/en/mali/health-statistics/ml-suicide-mortality-rate-per-100000-population
    Explore at:
    Dataset updated
    Oct 10, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Mali
    Description

    Mali ML: Suicide Mortality Rate: per 100,000 Population data was reported at 4.800 Number in 2016. This stayed constant from the previous number of 4.800 Number for 2015. Mali ML: Suicide Mortality Rate: per 100,000 Population data is updated yearly, averaging 4.800 Number from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 5.500 Number in 2000 and a record low of 4.800 Number in 2016. Mali ML: Suicide Mortality Rate: per 100,000 Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mali – Table ML.World Bank: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  6. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  7. NCHS - Drug Poisoning Mortality by County: United States

    • catalog.data.gov
    • datahub.hhs.gov
    • +4more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Drug Poisoning Mortality by County: United States [Dataset]. https://catalog.data.gov/dataset/nchs-drug-poisoning-mortality-by-county-united-states-6904d
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes drug poisoning deaths at the county level by selected demographic characteristics and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  8. NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • catalog.data.gov
    • data.virginia.gov
    • +6more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  9. Death rate by age and sex in the U.S. 2021

    • statista.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  10. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  11. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Aug 15, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  12. Rates of death for the leading causes of death in low-income countries in...

    • statista.com
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rates of death for the leading causes of death in low-income countries in 2021 [Dataset]. https://www.statista.com/statistics/311934/top-ten-causes-of-death-in-low-income-countries/
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Worldwide
    Description

    The leading cause of death in low-income countries worldwide in 2021 was lower respiratory infections, followed by stroke and ischemic heart disease. The death rate from lower respiratory infections that year was 59.4 deaths per 100,000 people. While the death rate from stroke was around 51.6 per 100,000 people. Many low-income countries suffer from health issues not seen in high-income countries, including infectious diseases, malnutrition and neonatal deaths, to name a few. Low-income countries worldwide Low-income countries are defined as those with per gross national incomes (GNI) per capita of 1,045 U.S. dollars or less. A majority of the world’s low-income countries are located in sub-Saharan Africa and South East Asia. Some of the lowest-income countries as of 2023 include Burundi, Sierra Leone, and South Sudan. Low-income countries have different health problems that lead to worse health outcomes. For example, Chad, Lesotho, and Nigeria have some of the lowest life expectancies on the planet. Health issues in low-income countries Low-income countries also tend to have higher rates of HIV/AIDS and other infectious diseases as a consequence of poor health infrastructure and a lack of qualified health workers. Eswatini, Lesotho, and South Africa have some of the highest rates of new HIV infections worldwide. Likewise, tuberculosis, a treatable condition that affects the respiratory system, has high incident rates in lower income countries. Other health issues can be affected by the income of a country as well, including maternal and infant mortality. In 2023, Afghanistan had one of the highest rates of infant mortality rates in the world.

  13. L

    Laos LA: Suicide Mortality Rate: per 100,000 Population

    • ceicdata.com
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Laos LA: Suicide Mortality Rate: per 100,000 Population [Dataset]. https://www.ceicdata.com/en/laos/health-statistics/la-suicide-mortality-rate-per-100000-population
    Explore at:
    Dataset updated
    Feb 12, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2015
    Area covered
    Laos
    Description

    Laos LA: Suicide Mortality Rate: per 100,000 Population data was reported at 8.600 Number in 2016. This records an increase from the previous number of 8.500 Number for 2015. Laos LA: Suicide Mortality Rate: per 100,000 Population data is updated yearly, averaging 8.900 Number from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 10.100 Number in 2000 and a record low of 8.500 Number in 2015. Laos LA: Suicide Mortality Rate: per 100,000 Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  14. Deaths and age-specific mortality rates, by selected grouped causes

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths and age-specific mortality rates, by selected grouped causes [Dataset]. http://doi.org/10.25318/1310039201-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.

  15. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/widgets/hree-nys2
    Explore at:
    application/rdfxml, csv, application/rssxml, json, xml, tsvAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  16. Deaths from all causes

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Deaths from all causes [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/deaths-from-all-causes
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of death (all causes) by sex, race/ethnicity, age; trends. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau; 2010 Census, Tables PCT12, PCT12H, PCT12I, PCT12J, PCT12K, PCT12L, PCT12M; generated by Baath M.; using American FactFinder; Accessed June 20, 2017. METADATA:Notes (String): Lists table title, notes and sourcesYear (Numeric): Year of dataCategory (String): Lists the category representing the data: Santa Clara County is for total population, sex: Male and Female, race/ethnicity: African American, Asian/Pacific Islander, Latino and White (non-Hispanic White only); age categories as follows: child age groups: <1, 1 to 4, 5 to 11, 12 to 17; youth age groups: 10 to 19, 20 to 24; age groups 1: 0 to 17, 18 to 64, 65+; age groups 2: <1, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, 85+; United StatesRate per 100,000 people (Numeric): Rate of deaths by all causes. Rates for age groups are reported as age-specific rates per 100,000 people. All other rates are age-adjusted rates per 100,000 people.

  17. NCHS - Drug Poisoning Mortality by State: United States

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Drug Poisoning Mortality by State: United States [Dataset]. https://catalog.data.gov/dataset/nchs-drug-poisoning-mortality-by-state-united-states-71a29
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  18. a

    Good Health and Well-Being

    • fijitest-sdg.hub.arcgis.com
    • sdgs.amerigeoss.org
    • +15more
    Updated Jul 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arobby1971 (2022). Good Health and Well-Being [Dataset]. https://fijitest-sdg.hub.arcgis.com/items/0b3b18cabb254f83a7ceb786347f58cc
    Explore at:
    Dataset updated
    Jul 3, 2022
    Dataset authored and provided by
    arobby1971
    Area covered
    Description

    Goal 3Ensure healthy lives and promote well-being for all at all agesTarget 3.1: By 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live birthsIndicator 3.1.1: Maternal mortality ratioSH_STA_MORT: Maternal mortality ratioIndicator 3.1.2: Proportion of births attended by skilled health personnelSH_STA_BRTC: Proportion of births attended by skilled health personnel (%)Target 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsIndicator 3.2.1: Under-5 mortality rateSH_DYN_IMRTN: Infant deaths (number)SH_DYN_MORT: Under-five mortality rate, by sex (deaths per 1,000 live births)SH_DYN_IMRT: Infant mortality rate (deaths per 1,000 live births)SH_DYN_MORTN: Under-five deaths (number)Indicator 3.2.2: Neonatal mortality rateSH_DYN_NMRTN: Neonatal deaths (number)SH_DYN_NMRT: Neonatal mortality rate (deaths per 1,000 live births)Target 3.3: By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseasesIndicator 3.3.1: Number of new HIV infections per 1,000 uninfected population, by sex, age and key populationsSH_HIV_INCD: Number of new HIV infections per 1,000 uninfected population, by sex and age (per 1,000 uninfected population)Indicator 3.3.2: Tuberculosis incidence per 100,000 populationSH_TBS_INCD: Tuberculosis incidence (per 100,000 population)Indicator 3.3.3: Malaria incidence per 1,000 populationSH_STA_MALR: Malaria incidence per 1,000 population at risk (per 1,000 population)Indicator 3.3.4: Hepatitis B incidence per 100,000 populationSH_HAP_HBSAG: Prevalence of hepatitis B surface antigen (HBsAg) (%)Indicator 3.3.5: Number of people requiring interventions against neglected tropical diseasesSH_TRP_INTVN: Number of people requiring interventions against neglected tropical diseases (number)Target 3.4: By 2030, reduce by one third premature mortality from non-communicable diseases through prevention and treatment and promote mental health and well-beingIndicator 3.4.1: Mortality rate attributed to cardiovascular disease, cancer, diabetes or chronic respiratory diseaseSH_DTH_NCOM: Mortality rate attributed to cardiovascular disease, cancer, diabetes or chronic respiratory disease (probability)SH_DTH_NCD: Number of deaths attributed to non-communicable diseases, by type of disease and sex (number)Indicator 3.4.2: Suicide mortality rateSH_STA_SCIDE: Suicide mortality rate, by sex (deaths per 100,000 population)SH_STA_SCIDEN: Number of deaths attributed to suicide, by sex (number)Target 3.5: Strengthen the prevention and treatment of substance abuse, including narcotic drug abuse and harmful use of alcoholIndicator 3.5.1: Coverage of treatment interventions (pharmacological, psychosocial and rehabilitation and aftercare services) for substance use disordersSH_SUD_ALCOL: Alcohol use disorders, 12-month prevalence (%)SH_SUD_TREAT: Coverage of treatment interventions (pharmacological, psychosocial and rehabilitation and aftercare services) for substance use disorders (%)Indicator 3.5.2: Alcohol per capita consumption (aged 15 years and older) within a calendar year in litres of pure alcoholSH_ALC_CONSPT: Alcohol consumption per capita (aged 15 years and older) within a calendar year (litres of pure alcohol)Target 3.6: By 2020, halve the number of global deaths and injuries from road traffic accidentsIndicator 3.6.1: Death rate due to road traffic injuriesSH_STA_TRAF: Death rate due to road traffic injuries, by sex (per 100,000 population)Target 3.7: By 2030, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmesIndicator 3.7.1: Proportion of women of reproductive age (aged 15–49 years) who have their need for family planning satisfied with modern methodsSH_FPL_MTMM: Proportion of women of reproductive age (aged 15-49 years) who have their need for family planning satisfied with modern methods (% of women aged 15-49 years)Indicator 3.7.2: Adolescent birth rate (aged 10–14 years; aged 15–19 years) per 1,000 women in that age groupSP_DYN_ADKL: Adolescent birth rate (per 1,000 women aged 15-19 years)Target 3.8: Achieve universal health coverage, including financial risk protection, access to quality essential health-care services and access to safe, effective, quality and affordable essential medicines and vaccines for allIndicator 3.8.1: Coverage of essential health servicesSH_ACS_UNHC: Universal health coverage (UHC) service coverage indexIndicator 3.8.2: Proportion of population with large household expenditures on health as a share of total household expenditure or incomeSH_XPD_EARN25: Proportion of population with large household expenditures on health (greater than 25%) as a share of total household expenditure or income (%)SH_XPD_EARN10: Proportion of population with large household expenditures on health (greater than 10%) as a share of total household expenditure or income (%)Target 3.9: By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contaminationIndicator 3.9.1: Mortality rate attributed to household and ambient air pollutionSH_HAP_ASMORT: Age-standardized mortality rate attributed to household air pollution (deaths per 100,000 population)SH_STA_AIRP: Crude death rate attributed to household and ambient air pollution (deaths per 100,000 population)SH_STA_ASAIRP: Age-standardized mortality rate attributed to household and ambient air pollution (deaths per 100,000 population)SH_AAP_MORT: Crude death rate attributed to ambient air pollution (deaths per 100,000 population)SH_AAP_ASMORT: Age-standardized mortality rate attributed to ambient air pollution (deaths per 100,000 population)SH_HAP_MORT: Crude death rate attributed to household air pollution (deaths per 100,000 population)Indicator 3.9.2: Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene (exposure to unsafe Water, Sanitation and Hygiene for All (WASH) services)SH_STA_WASH: Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene (deaths per 100,000 population)Indicator 3.9.3: Mortality rate attributed to unintentional poisoningSH_STA_POISN: Mortality rate attributed to unintentional poisonings, by sex (deaths per 100,000 population)Target 3.a: Strengthen the implementation of the World Health Organization Framework Convention on Tobacco Control in all countries, as appropriateIndicator 3.a.1: Age-standardized prevalence of current tobacco use among persons aged 15 years and olderSH_PRV_SMOK: Age-standardized prevalence of current tobacco use among persons aged 15 years and older, by sex (%)Target 3.b: Support the research and development of vaccines and medicines for the communicable and non-communicable diseases that primarily affect developing countries, provide access to affordable essential medicines and vaccines, in accordance with the Doha Declaration on the TRIPS Agreement and Public Health, which affirms the right of developing countries to use to the full the provisions in the Agreement on Trade-Related Aspects of Intellectual Property Rights regarding flexibilities to protect public health, and, in particular, provide access to medicines for allIndicator 3.b.1: Proportion of the target population covered by all vaccines included in their national programmeSH_ACS_DTP3: Proportion of the target population with access to 3 doses of diphtheria-tetanus-pertussis (DTP3) (%)SH_ACS_MCV2: Proportion of the target population with access to measles-containing-vaccine second-dose (MCV2) (%)SH_ACS_PCV3: Proportion of the target population with access to pneumococcal conjugate 3rd dose (PCV3) (%)SH_ACS_HPV: Proportion of the target population with access to affordable medicines and vaccines on a sustainable basis, human papillomavirus (HPV) (%)Indicator 3.b.2: Total net official development assistance to medical research and basic health sectorsDC_TOF_HLTHNT: Total official development assistance to medical research and basic heath sectors, net disbursement, by recipient countries (millions of constant 2018 United States dollars)DC_TOF_HLTHL: Total official development assistance to medical research and basic heath sectors, gross disbursement, by recipient countries (millions of constant 2018 United States dollars)Indicator 3.b.3: Proportion of health facilities that have a core set of relevant essential medicines available and affordable on a sustainable basisSH_HLF_EMED: Proportion of health facilities that have a core set of relevant essential medicines available and affordable on a sustainable basis (%)Target 3.c: Substantially increase health financing and the recruitment, development, training and retention of the health workforce in developing countries, especially in least developed countries and small island developing StatesIndicator 3.c.1: Health worker density and distributionSH_MED_DEN: Health worker density, by type of occupation (per 10,000 population)SH_MED_HWRKDIS: Health worker distribution, by sex and type of occupation (%)Target 3.d: Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national and global health risksIndicator 3.d.1: International Health Regulations (IHR) capacity and health emergency preparednessSH_IHR_CAPS: International Health Regulations (IHR) capacity, by type of IHR capacity (%)Indicator 3.d.2: Percentage of bloodstream infections due to selected antimicrobial-resistant organismsiSH_BLD_MRSA: Percentage of bloodstream infection due to methicillin-resistant Staphylococcus aureus (MRSA) among patients seeking care and whose

  19. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 23, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  20. A

    ‘NCHS - Drug Poisoning Mortality by County: United States’ analyzed by...

    • analyst-2.ai
    Updated Jan 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘NCHS - Drug Poisoning Mortality by County: United States’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-nchs-drug-poisoning-mortality-by-county-united-states-8841/ec66cf03/?iid=003-578&v=presentation
    Explore at:
    Dataset updated
    Jan 14, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘NCHS - Drug Poisoning Mortality by County: United States’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3452f1d5-5a52-4f78-8ff8-02a7f7bff7fc on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains model-based county estimates for drug-poisoning mortality.

    Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).

    Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2016 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.

    Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances.

    Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates for 1999-2015 have been updated, and may differ slightly from previously published estimates. Differences are expected to be minimal, and may result from different county boundaries used in this release (see below) and from the inclusion of an additional year of data. Previously published estimates can be found here for comparison.(6) Estimates are unavailable for Broomfield County, Colorado, and Denali County, Alaska, before 2003 (7,8). Additionally, Clifton Forge County, Virginia only appears on the mortality files prior to 2003, while Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. These counties were therefore merged with adjacent counties where necessary to create a consistent set of geographic units across the time period. County boundaries are largely consistent with the vintage 2005-2007 bridged-race population file geographies, with the modifications noted previously (7,8).

    REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm.

    1. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.

    2. Rossen LM, Khan D, Warner M. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999–2009. Am J Prev Med 45(6):e19–25. 2013.

    3. Rossen LM, Khan D, Warner M. Hot spots in mortality from drug poisoning in the United States, 2007–2009. Health Place 26:14–20. 2014.

    4. Rossen LM, Khan D, Hamilton B, Warner M. Spatiotemporal variation in selected health outcomes from the National Vital Statistics System. Presented at: 2015 National Conference on Health Statistics, August 25, 2015, Bethesda, MD. Available from: http://www.cdc.gov/nchs/ppt/nchs2015/Rossen_Tuesday_WhiteOak_BB3.pdf.

    5. Rossen LM, Bastian B, Warner M, and Khan D. NCHS – Drug Poisoning Mortality by County: United States, 1999-2015. Available from: https://data.cdc.gov/NCHS/NCHS-Drug-Poisoning-Mortality-by-County-United-Sta/pbkm-d27e.

    6. National Center for Health Statistics. County geog

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population [Dataset]. https://www.ceicdata.com/en/france/health-statistics/fr-mortality-rate-attributed-to-unintentional-poisoning-male-per-100000-male-population

France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population

Explore at:
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2000 - Dec 1, 2016
Area covered
France
Description

France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data was reported at 0.300 Ratio in 2016. This records a decrease from the previous number of 0.400 Ratio for 2015. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data is updated yearly, averaging 0.400 Ratio from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 0.500 Ratio in 2000 and a record low of 0.300 Ratio in 2016. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s France – Table FR.World Bank: Health Statistics. Mortality rate attributed to unintentional poisonings is the number of male deaths from unintentional poisonings in a year per 100,000 male population. Unintentional poisoning can be caused by household chemicals, pesticides, kerosene, carbon monoxide and medicines, or can be the result of environmental contamination or occupational chemical exposure.; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

Search
Clear search
Close search
Google apps
Main menu