Facebook
TwitterNew York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.
This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.
I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.
This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.
I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Facebook
TwitterThis dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).
Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.
Data are updated each Friday around 2 pm.
For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.
COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
TwitterProvisional COVID-19 Deaths by Place of Death and Age
Description
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, influenza, and pneumonia reported to NCHS by jurisdiction of occurrence, place of death, and age group.
Dataset Details
Publisher: Centers for Disease Control and Prevention Temporal Coverage: 2020-01-01/2023-07-29 Geographic Coverage: United States… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/provisional-covid-19-deaths-by-place-of-death-and.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains three brazilian open COVID-19 datasets from June 1st, 2020. The Flu-Like Syndrome dataset contains several information about flu-like syndrome (Síndrome Gripal) patients. It contains mostly mild Flu-Like Syndrome cases, including COVID-19 confirmed cases. There is not an official codebook for this dataset, but portuguese speakers can easily infer the meaning of the columns.
The SARS dataset (Severe Acute Respiratory Syndrome, or Síndrome Respiratória Aguda Grave - SRAG - in portuguese) contains mostly cases where hospitalization is needed (even though some of the cases from this dataset didn't need hospitalization. These cases can be filtered using the column "HOSPITA"). Part of the patients from this dataset are confirmed COVID-19 cases (the column "CLASSI_FIN" is 5 for confirmed cases). There is an official codebook for this dataset (SARS_Codebook.pdf), but unfortunately it is written in portuguese.
The Officially Reported Cases dataset contains only confirmed COVID-19 cases that were officially reported by the government. It contains the number of cases and deaths reported until each day for each Brazilian city.
When analyzing the data, beware of notification lag: These datasets contains the cases reported until June 1st, but notified cases usually take some days to be reported. This explains the small number of cases for dates close to June 1st in the Flu-Like Syndrome and SARS datasets.
All datasets shared here are open datasets that were shared by the Brazilian Ministry of Health. The Flu-Like Syndrome and SARS datasets were downloaded from https://opendatasus.saude.gov.br, and the dataset for officially reported cases was downloaded from https://covid.saude.gov.br/. However, the Flu-Like Syndrome and the officially reported cases datasets were removed from these websites on June 7, 2020, and June 6, 2020, respectively.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.
My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:
See covid19_data - data_sources.csv for data source details.
Notebook: https://www.kaggle.com/bitsnpieces/covid19-data
Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.
I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.
I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.
Facebook
TwitterProvisional COVID-19 Deaths by Sex and Age
Description
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Dataset Details
Publisher: Centers for Disease Control and Prevention Temporal Coverage: 2020-01-01/2023-07-29 Geographic Coverage: United States, Puerto Rico Last… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/provisional-covid-19-deaths-by-sex-and-age.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Provisional counts of deaths by the week the deaths occurred, by state of occurrence, and by select underlying causes of death for 2020-2022. The dataset also includes weekly provisional counts of death for COVID-19, coded to ICD-10 code U07.1 as an underlying or multiple cause of death.
NOTE: death counts are presented with a one week lag.
This dataset to be updated weekly with the notebook run. The coverage period is between 2020-2022. This can used in conjunction with other datasets to plot the bigger picture. ex. 2014-2018
The dataset highlights select causes of death. Some prominent causes are not listed in specifics.
| Column Name | Description |
|---|---|
| Data As Of | Date of analysis |
| Jurisdiction of Occurrence | Jurisdiction of Occurrence |
| MMWR Year | MMWR Year |
| MMWR Week | MMWR Week |
| Week Ending Date | Week Ending Date |
| All Cause | All Cause |
| Natural Cause | Natural Cause (A00-R99, U07) |
| Septicemia (A40-A41) | Septicemia (A40-A41) |
| Malignant neoplasms (C00-C97) | Malignant neoplasms (C00-C97) |
| Diabetes mellitus (E10-E14) | Diabetes mellitus (E10-E14) |
| Alzheimer disease (G30) | Alzheimer disease (G30) |
| Influenza and pneumonia (J09-J18) | Influenza and pneumonia (J09-J18) |
| Chronic lower respiratory diseases (J40-J47) | Chronic lower respiratory diseases (J40-J47) |
| Other diseases of respiratory system (J00-J06,J30-J39,J67,J70-J98) | Other diseases of respiratory system (J00-J06,J30-J39,J67,J70-J98) |
| Nephritis, nephrotic syndrome and nephrosis (N00-N07,N17-N19,N25-N27) | Nephritis, nephrotic syndrome and nephrosis (N00-N07,N17-N19,N25-N27) |
| Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (R00-R99) | Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (R00-R99) |
| Diseases of heart (I00-I09,I11,I13,I20-I51) | Diseases of heart (I00-I09,I11,I13,I20-I51) |
| Cerebrovascular diseases (I60-I69) | Cerebrovascular diseases (I60-I69) |
| COVID-19 (U071, Multiple Cause of Death) | COVID-19 (U071, Multiple Cause of Death) |
| COVID-19 (U071, Underlying Cause of Death) | COVID-19 (U071, Underlying Cause of Death) |
| flag_allcause | Suppressed (counts 1-9) for All causes of death |
| flag_natcause | Suppressed (counts 1-9) for Natural causes of death |
| flag_sept | Suppressed (counts 1-9) for Septicemia |
| flag_neopl | Suppressed (counts 1-9) for Malignant eoplasms |
| flag_diab | Suppressed (counts 1-9) for Diabetes mellitis |
| flag_alz | Suppressed (counts 1-9) for Alzheimer disease |
| flag_inflpn | Suppressed (counts 1-9) for Influenza and pneumonia |
| flag_clrd | Suppressed (counts 1-9) for Chronic lower respiratory diseases |
| flag_otherresp | Suppressed (counts 1-9) for Other diseases of respiratory system |
| flag_nephr | Suppressed (counts 1-9) for Nephritis, nephrotic syndrome and nephrosis |
| flag_otherunk | Suppressed (counts 1-9) for Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified |
| flag_hd | Suppressed (counts 1-9) for Diseases of heart |
| flag_stroke | Suppressed (counts 1-9) for Cerebrovascular diseases |
| flag_cov19mcod | Suppressed (counts 1-9) for COVID-19 (U071, Multiple Cause of Death) |
| flag_cov19ucod | Suppressed (counts 1-9) for COVID-19 (U071, Underlying Cause of Death) |
Facebook
TwitterIntroductionWe compared hospitalization outcomes of young children hospitalized with COVID-19 to those hospitalized with influenza in the United States.MethodsPatients aged 0-<5 years hospitalized with an admission diagnosis of acute COVID-19 (April 2021-March 2022) or influenza (April 2019-March 2020) were selected from the PINC AI Healthcare Database Special Release. Hospitalization outcomes included length of stay (LOS), intensive care unit (ICU) admission, oxygen supplementation, and mechanical ventilation (MV). Inverse probability of treatment weighting was used to adjust for confounders in logistic regression analyses.ResultsAmong children hospitalized with COVID-19 (n = 4,839; median age: 0 years), 21.3% had an ICU admission, 19.6% received oxygen supplementation, 7.9% received MV support, and 0.5% died. Among children hospitalized with influenza (n = 4,349; median age: 1 year), 17.4% were admitted to the ICU, 26.7% received oxygen supplementation, 7.6% received MV support, and 0.3% died. Compared to children hospitalized with influenza, those with COVID-19 were more likely to have an ICU admission (adjusted odds ratio [aOR]: 1.34; 95% confidence interval [CI]: 1.21–1.48). However, children with COVID-19 were less likely to receive oxygen supplementation (aOR: 0.71; 95% CI: 0.64–0.78), have a prolonged LOS (aOR: 0.81; 95% CI: 0.75–0.88), or a prolonged ICU stay (aOR: 0.56; 95% CI: 0.46–0.68). The likelihood of receiving MV was similar (aOR: 0.94; 95% CI: 0.81, 1.1).ConclusionsHospitalized children with either SARS-CoV-2 or influenza had severe complications including ICU admission and oxygen supplementation. Nearly 10% received MV support. Both SARS-CoV-2 and influenza have the potential to cause severe illness in young children.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All-cause, COVID-19, and non-COVID-19 ASDR for ages 25+ by state and time period.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: Respiratory viruses are among the leading causes of disease and death among children. Co-circulation of influenza and SARS-CoV2 can lead to diagnostic and management difficulties given the similarities in the clinical picture.Methods: This is a cohort of all children hospitalized with SARS-CoV2 infection from March to September 3rd 2020, and all children admitted with influenza throughout five flu-seasons (2013–2018) at a pediatric referral hospital. Patients with influenza were identified from the clinical laboratory database. All hospitalized patients with confirmed SARS-CoV2 infection were followed-up prospectively.Results: A total of 295 patients with influenza and 133 with SARS-CoV2 infection were included. The median age was 3.7 years for influenza and 5.3 years for SARS-CoV2. Comorbidities were frequent in both groups, but they were more common in patients with influenza (96.6 vs. 82.7%, p < 0.001). Fever and cough were the most common clinical manifestations in both groups. Rhinorrhea was present in more than half of children with influenza but was infrequent in those with COVID-19 (53.6 vs. 5.8%, p < 0.001). Overall, 6.4% percent of patients with influenza and 7.5% percent of patients with SARS-CoV2 infection died. In-hospital mortality and the need for mechanical ventilation among symptomatic patients were similar between groups in the multivariate analysis.Conclusions: Influenza and COVID-19 have a similar picture in pediatric patients, which makes diagnostic testing necessary for adequate diagnosis and management. Even though most cases of COVID-19 in children are asymptomatic or mild, the risk of death among hospitalized patients with comorbidities may be substantial, especially among infants.
Facebook
TwitterThis dataset represents preliminary weekly estimates of cumulative U.S. COVID-19-associated hospitalizations for the 2024-2025 period. The weekly cumulatve COVID-19 –associated hospitalization estimates are preliminary, and use reported weekly hospitalizations among laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data are updated week-by-week as new COVID-19 hospitalizations are reported to CDC from the COVID-NET system and include both new admissions that occurred during the reporting week, as well as those admitted in previous weeks that may not have been included in earlier reporting. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated hospitalizations that have occurred since October 1, 2024. For details, please refer to the publication [7].
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
TwitterLatin America became an epicenter of the coronavirus pandemic in May, driven by Brazil’s ballooning caseload. Ten months after its first known case, Brazil has had more than 7.9 million cases and over 200,000 deaths.
In early June, Brazil began averaging about 1,000 deaths per day from Covid-19, joining the United States — and later India — as the countries with the world’s largest death tolls.
This dataset contains information about COVID-19 in Brazil extracted on the date 16/06/2021. It is the most updated dataset available about Covid in Brazil
🔍 date: date that the data was collected. format YYYY-MM-DD.
🔍 state: Abbreviation for States. Example: SP
🔍 city: Name of the city (if the value is NaN, they are referring to the State, not the city)
🔍 place_type: Can be City or State
🔍 order_for_place: Number that identifies the registering order for this location. The line that refers to the first log is going to be shown as 1, and the following information will start the count as an index.
🔍 is_last: Show if the line was the last update from that place, can be True or False
🔍 city_ibge_code: IBGE Code from the location
🔍confirmed: Number of confirmed cases.
🔍deaths: Number of deaths.
🔍estimated_population: Estimated population for this city/state in 2020. Data from IBGE
🔍estimated_population_2019: Estimated population for this city/state in 2019. Data from IBGE.
🔍confirmed_per_100k_inhabitants: Number of confirmed cases per 100.000 habitants (based on estimated_population).
🔍death_rate: Death rate (deaths / confirmed cases).
This dataset was downloaded from the URL bello. Thanks, Brasil.IO! Their main goal is to make all Brazilian data available to the public DATASET URL: https://brasil.io/dataset/covid19/files/ Cities map file https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2020/Brasil/BR/
COVID-19 - https://www.kaggle.com/rafaelherrero/covid19-brazil-full-cases-17062021 COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019 Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesThe aim of this study is to describe, visualize, and compare the trends and epidemiological features of the mortality rates of 10 notifiable respiratory infectious diseases in China from 2004 to 2020.SettingData were obtained from the database of the National Infectious Disease Surveillance System (NIDSS) and reports released by the National and local Health Commissions from 2004 to 2020. Spearman correlations and Joinpoint regression models were used to quantify the temporal trends of RIDs by calculating annual percentage changes (APCs) in the rates of mortality.ResultsThe overall mortality rate of RIDs was stable across China from 2004 to 2020 (R = −0.38, P = 0.13), with an APC per year of −2.2% (95% CI: −4.6 to 0.3; P = 0.1000). However, the overall mortality rate of 10 RIDs in 2020 decreased by 31.80% (P = 0.006) compared to the previous 5 years before the COVID-19 pandemic. The highest mortality occurred in northwestern, western, and northern China. Tuberculosis was the leading cause of RID mortality, and mortality from tuberculosis was relatively stable throughout the 17 years (R = −0.36, P = 0.16), with an APC of −1.9% (95% CI −4.1 to 0.4, P = 0.1000). Seasonal influenza was the only disease for which mortality significantly increased (R = 0.73, P = 0.00089), with an APC of 29.70% (95% CI 16.60–44.40%; P = 0.0000). The highest yearly case fatality ratios (CFR) belong to avian influenza A H5N1 [687.5 per 1,000 (33/48)] and epidemic cerebrospinal meningitis [90.5748 per 1,000 (1,010/11,151)]. The age-specific CFR of 10 RIDs was highest among people over 85 years old [13.6551 per 1,000 (2,353/172,316)] and was lowest among children younger than 10 years, particularly in 5-year-old children [0.0552 per 1,000 (58/1,051,178)].ConclusionsThe mortality rates of 10 RIDs were relatively stable from 2004 to 2020 with significant differences among Chinese provinces and age groups. There was an increased mortality trend for seasonal influenza and concerted efforts are needed to reduce the mortality rate of seasonal influenza in the future.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Data by medical encounter for the following conditions by age, race/ethnicity, and gender:
Influenza (Flu) Flu/Pneumonia Pneumonia Urinary Tract Infections
Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
Blank Cells: Rates not calculated for fewer than 11 events. Rates not calculated in cases where zip code is unknown. Geography not reported where there are no cases reported in a given year. SES: Is the median household income by SRA community. Data for SRAs only.
*The COVID-19 pandemic was associated with increases in all-cause mortality. COVID-19 deaths have affected the patterns of mortality including those of Communicable conditions.
Data sources: California Department of Public Health, Center for Health Statistics, Office of Health Information and Research, Vital Records Business Intelligence System (VRBIS). California Department of Health Care Access and Information (HCAI), Emergency Department Database and Patient Discharge Database, 2020. SANDAG Population Estimates, 2020 (vintage: 09/2022). Population estimates were derived using the 2010 Census and data should be considered preliminary. Prepared by: County of San Diego, Health and Human Services Agency, Public Health Services, Community Health Statistics Unit, February 2023.
2020 Community Profile Data Guide and Data Dictionary Dashboard: https://public.tableau.com/app/profile/chsu/viz/2020CommunityProfilesDataGuideandDataDictionaryDashboard_16763944288860/HomePage
Facebook
TwitterInfluenza is a vaccine-preventable disease which leads to many hospitalizations and deaths in Alberta each year. This document provides guidance for the delivery of influenza immunization services for the 2020-21 season during COVID-19, and assists health practitioners with measures to reduce transmission of COVID-19.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of patients hospitalised for COVID-19 and controls.
Facebook
TwitterNew York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.
This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.
I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.
This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.
I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.