31 datasets found
  1. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  2. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Mar 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  3. COVID-19 variants in Latin America as of July 2023, by country

    • ai-chatbox.pro
    • statista.com
    Updated Mar 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Mendoza (2023). COVID-19 variants in Latin America as of July 2023, by country [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F71645%2Fcoronavirus-covid-19-in-latin-america%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Jennifer Mendoza
    Area covered
    Latin America
    Description

    As of July 2023, the Omicron variant was the most prevalent among selected countries in Latin America. The share of COVID-19 cases corresponding to the Omicron variant amounted to 100 percent of the analyzed sequences of SARS-CoV-2 in Colombia. The variant Omicron (XBB.1.5) accounted for nearly 81 percent of the sequenced cases in the country, while Omicron (XBB.1.9) added up to 14 percent. Similarly, Peru reported over 90 percent of its reviewed sequences corresponding to the variant Omicron (XBB.1.5), while Omicron (XBB) accounted for around 2.4 percent of cases studied.

    A regional overview

    The Omicron variant of SARS-CoV-2 - the virus causing COVID-19 - was designated as a variant of concern by the World Health Organization in November 2021. Since then, it has been rapidly spreading, causing an unprecedented increase in the number of cases reported worldwide. In Latin America, Brazil had been the most affected country by the disease already before the emergence of the Omicron variant, with nearly 37.4 million cases and around 701,494 confirmed deaths as of May 2, 2023. However, it is Peru that has the largest mortality rate per 100,000 inhabitants due to the SARS-Cov-2 in the region, with roughly 672 deaths per 100,000 people.

    Vaccination campaigns in Latin America

    As the COVID-19 pandemic continues to cause social and economic harm worldwide, most Latin American and Caribbean countries advance their immunization programs. As of August 14, 2023, Brazil had administered the largest number of vaccines in the region, with over 486.4 million doses. Mexico and Argentina followed, with about 223.1 million and 116 million COVID-19 doses administered, respectively. However, Cuba had the highest vaccination rate not only in the region, but also the world, with around 391 vaccines given per 100 people.

    Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.

  4. Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent)...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rssxml +4
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent) Booster Status [Dataset]. https://data.cdc.gov/w/54ys-qyzm/tdwk-ruhb?cur=_w3oQ1p5jKQ&from=TwnFx2xkAK0
    Explore at:
    json, tsv, csv, application/rssxml, xmlAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes

    Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status

    Dataset and data visualization details:

    These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.

    Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.

    Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.

    Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.

    Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.

    Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.

    Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.

    Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.

    References

    Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.

    Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

    Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152

  5. Risk of death involving coronavirus (COVID-19) by variant, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Risk of death involving coronavirus (COVID-19) by variant, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/riskofdeathinvolvingcoronaviruscovid19byvariantengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 24, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Analysis comparing the risk of coronavirus (COVID-19) death in people infected by Omicron and Delta variants, after adjusting for socio-demographic factors, vaccination status and health conditions.

  6. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  7. COVID-19 cases and deaths in Mexico 2025

    • statista.com
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 cases and deaths in Mexico 2025 [Dataset]. https://www.statista.com/statistics/1107063/mexico-covid-19-cases-deaths/
    Explore at:
    Dataset updated
    May 12, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 1, 2020 - May 11, 2025
    Area covered
    Mexico
    Description

    The first case of COVID-19 in Mexico was detected on March 1, 2020. By the end of the year, the total number of confirmed infections had surpassed 1.4 million. Meanwhile, the number of deaths related to the disease was nearing 148,000. On May 11, 2025, the number of cases recorded had reached 7.6 million, while the number of deaths amounted to around 335,000. The relevance of the Omicron variant Omicron, a highly contagious COVID-19 variant, was declared of concern by the World Health Organization (WHO) at the end of November 2021. As the pandemic unfolded, it became the variant with the highest share of COVID-19 cases in the world. In Latin America, countries such as Colombia, Argentina, Brazil, and Mexico were strongly affected. In fact, by 2023 nearly all analyzed sequences within these countries corresponded to an Omicron subvariant. Beyond a health crisis As the COVID-19 pandemic progressed worldwide, the respiratory disease caused by the virus SARS-CoV-2 virus first detected in Wuhan brought considerable economic consequences for countries and households. While Mexico’s gross domestic product (GDP) in current prices declined in 2020 compared to the previous year, a survey conducted among adults during the first months of 2021 showed COVID-19 impacted families mainly through finances and employment, with around one third of households in Mexico reporting an income reduction and the same proportion having at least one household member suffering from the disease.Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.

  8. f

    Table_2_Multiple introduced lineages and the single native lineage...

    • frontiersin.figshare.com
    bin
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liping Gao; Canjun Zheng; Qi Shi; Lili Wang; Alie Tia; Jone Ngobeh; Zhiguo Liu; Xiaoping Dong; Zhenjun Li (2023). Table_2_Multiple introduced lineages and the single native lineage co-driving the four waves of the COVID-19 pandemic in West Africa.xlsx [Dataset]. http://doi.org/10.3389/fpubh.2022.957277.s002
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Frontiers
    Authors
    Liping Gao; Canjun Zheng; Qi Shi; Lili Wang; Alie Tia; Jone Ngobeh; Zhiguo Liu; Xiaoping Dong; Zhenjun Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West Africa, Africa
    Description

    Coronavirus disease 2019 (COVID-19) has become a vast burden on public health and socioeconomics in West Africa, but the epidemic situation is unclear. Therefore, we conducted a retrospective analysis of the positive rate, death rate, and diversity of SARS-CoV-2. As of March 31, 2022, a total of 894,813 cases of COVID-19 have been recorded, with 12,028 deaths, both of which were distributed in all 16 countries. There were four waves of COVID-19 during this period. Most cases were recorded in the second wave, accounting for 34.50% of total cases. These data suggest that although West Africa seems to have experienced a low and relatively slow spread of COVID-19, the epidemic was ongoing, evolving with each COVID-19 global pandemic wave. Most cases and most deaths were both recorded in Nigeria. In contrast, the fewest cases and fewest deaths were reported, respectively, in Liberia and Sierra Leone. However, high death rates were found in countries with low incidence rates. These data suggest that the pandemic in West Africa has so far been heterogeneous, which is closely related to the infrastructure of public health and socioeconomic development (e.g., extreme poverty, GDP per capita, and human development index). At least eight SARS-CoV-2 variants were found, namely, Delta, Omicron, Eta, Alpha, Beta, Kappa, Iota, and Gamma, which showed high diversity, implicating that multiple-lineages from different origins were introduced. Moreover, the Eta variant was initially identified in Nigeria and distributed widely. These data reveal that the COVID-19 pandemic in the continent was co-driven by both multiple introduced lineages and a single native lineage. We suggest enhancing the quarantine measures upon entry at the borders and implementing a genome surveillance strategy to better understand the transmission dynamics of the COVID-19 pandemic in West Africa.

  9. f

    Table_1_Tracking temporal variations of fatality and symptomology correlated...

    • frontiersin.figshare.com
    docx
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shao Lin; Han Liu; Quan Qi; Ian Trees; Donghong Gao; Samantha Friedman; Xiaobo Romeiko Xue; David Lawrence (2024). Table_1_Tracking temporal variations of fatality and symptomology correlated with COVID-19 dominant variants and vaccine effectiveness in the United States.docx [Dataset]. http://doi.org/10.3389/fpubh.2024.1419886.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Sep 18, 2024
    Dataset provided by
    Frontiers
    Authors
    Shao Lin; Han Liu; Quan Qi; Ian Trees; Donghong Gao; Samantha Friedman; Xiaobo Romeiko Xue; David Lawrence
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionWe described how COVID-19 fatality and symptoms varied by dominant variant and vaccination in the US.MethodsUsing the Restricted Access Dataset from the US CDC (1/1/2020–10/20/2022), we conducted a cross-sectional study assessing differences in COVID-19 deaths, severity indicators (hospitalization, ICU, pneumonia, abnormal X-ray, acute respiratory distress syndrome, mechanical ventilation) and 12 mild symptoms by dominant variant/vaccination periods using logistic regression after controlling for confounders.ResultsWe found the highest fatality during the dominant periods of Wild (4.6%) and Delta (3.4%). Most severe symptoms appeared when Delta was dominant (Rate range: 2.0–9.4%). Omicron was associated with higher mild symptoms than other variants. Vaccination showed consistent protection against death and severe symptoms for most variants (Risk Ratio range: 0.41–0.93). Boosters, especially the second, provided additional protection, reducing severe symptoms by over 50%.DiscussionThis dataset may serve as a useful tool to monitor temporospatial changes of fatality and symptom for case management and surveillance.

  10. COVID-19 mortality rate in Latin America 2023, by country

    • statista.com
    • ai-chatbox.pro
    Updated Jun 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 mortality rate in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/1114603/latin-america-coronavirus-mortality-rate/
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America, LAC
    Description

    Peru is the country with the highest mortality rate due to the coronavirus disease (COVID-19) in Latin America. As of November 13, 2023, the country registered over 672 deaths per 100,000 inhabitants. It was followed by Brazil, with around 331.5 fatal cases per 100,000 population. In total, over 1.76 million people have died due to COVID-19 in Latin America and the Caribbean.

    Are these figures accurate? Although countries like Brazil already rank among the countries most affected by the coronavirus disease (COVID-19), there is still room to believe that the number of cases and deaths in Latin American countries are underreported. The main reason is the relatively low number of tests performed in the region. For example, Brazil, one of the most impacted countries in the world, has performed approximately 63.7 million tests as of December 22, 2022. This compared with over one billion tests performed in the United States, approximately 909 million tests completed in India, or around 522 million tests carried out in the United Kingdom.

    Capacity to deal with the outbreak With the spread of the Omicron variant, the COVID-19 pandemic is putting health systems around the world under serious pressure. The lack of equipment to treat acute cases, for instance, is one of the problems affecting Latin American countries. In 2019, the number of ventilators in hospitals in the most affected countries ranged from 25.23 per 100,000 inhabitants in Brazil to 5.12 per 100,000 people in Peru.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  11. f

    Table_1_Development and validation of a prognostic model based on immune...

    • figshare.com
    docx
    Updated Jun 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tianyu Lu; Qiuhong Man; Xueying Yu; Shuai Xia; Lu Lu; Shibo Jiang; Lize Xiong (2023). Table_1_Development and validation of a prognostic model based on immune variables to early predict severe cases of SARS-CoV-2 Omicron variant infection.docx [Dataset]. http://doi.org/10.3389/fimmu.2023.1157892.s005
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 19, 2023
    Dataset provided by
    Frontiers
    Authors
    Tianyu Lu; Qiuhong Man; Xueying Yu; Shuai Xia; Lu Lu; Shibo Jiang; Lize Xiong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has prevailed globally since November 2021. The extremely high transmissibility and occult manifestations were notable, but the severity and mortality associated with the Omicron variant and subvariants cannot be ignored, especially for immunocompromised populations. However, no prognostic model for specially predicting the severity of the Omicron variant infection is available yet. In this study, we aim to develop and validate a prognostic model based on immune variables to early recognize potentially severe cases of Omicron variant-infected patients.MethodsThis was a single-center prognostic study involving patients with SARS-CoV-2 Omicron variant infection. Eligible patients were randomly divided into the training and validation cohorts. Variables were collected immediately after admission. Candidate variables were selected by three variable-selecting methods and were used to construct Cox regression as the prognostic model. Discrimination, calibration, and net benefit of the model were evaluated in both training and validation cohorts.ResultsSix hundred eighty-nine of the involved 2,645 patients were eligible, consisting of 630 non-ICU cases and 59 ICU cases. Six predictors were finally selected to establish the prognostic model: age, neutrophils, lymphocytes, procalcitonin, IL-2, and IL-10. For discrimination, concordance indexes in the training and validation cohorts were 0.822 (95% CI: 0.748-0.896) and 0.853 (95% CI: 0.769-0.942). For calibration, predicted probabilities and observed proportions displayed high agreements. In the 21-day decision curve analysis, the threshold probability ranges with positive net benefit were 0~1 and nearly 0~0.75 in the training and validation cohorts, correspondingly.ConclusionsThis model had satisfactory high discrimination, calibration, and net benefit. It can be used to early recognize potentially severe cases of Omicron variant-infected patients so that they can be treated timely and rationally to reduce the severity and mortality of Omicron variant infection.

  12. Total number of deaths from COVID-19 Indonesia 2023

    • statista.com
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Total number of deaths from COVID-19 Indonesia 2023 [Dataset]. https://www.statista.com/statistics/1103816/indonesia-covid-19-number-of-deaths/
    Explore at:
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 12, 2020 - Mar 9, 2023
    Area covered
    Indonesia
    Description

    As of March 9, 2023, Indonesia registered 160,941 deaths from the coronavirus. This week, Indonesia is experiencing an increase in cases caused by the highly-contagious Omicron variant.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  13. f

    Characteristics of recipients of tixagevimab-cilgavimab (T/C) who developed...

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Chen; Nina Haste; Nancy Binkin; Nancy Law; Lucy E. Horton; Nancy Yam; Victor Chen; Shira Abeles (2023). Characteristics of recipients of tixagevimab-cilgavimab (T/C) who developed COVID-19 infection between December 19, 2021 and July 31, 2022 when Omicron was the dominant circulating variant. [Dataset]. http://doi.org/10.1371/journal.pone.0275356.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Benjamin Chen; Nina Haste; Nancy Binkin; Nancy Law; Lucy E. Horton; Nancy Yam; Victor Chen; Shira Abeles
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of T/C recipients who were infected prior to receiving T/C (pre-T/C) are compared with characteristics of T/C recipients who were diagnosed with COVID after having received any dose of T/C (post-T/C).

  14. U.S. Counties and Territories for COVID-19 Trends

    • disasterpartners.org
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). U.S. Counties and Territories for COVID-19 Trends [Dataset]. https://www.disasterpartners.org/datasets/49c25e0ce50340e08fcfe51fe6f26d1e
    Explore at:
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.Trends represent the day-to-day rate of new cases with a focus on the most recent 10 to 14 days. Includes Puerto Rico, Guam, Northern Marianas, and U.S. Virgin Islands. Daily new case counts are volatile for many reasons and sometimes the trends reflect that volatility. Thus, we decided to include longer-term summaries here. County Trends as of 9 Mar 20230 (-0) in Emergent1135 (+51) in Spreading1664 (-63) in Epidemic230 (+10) in Controlled110 (+2) in End StageNotes: Many states now only report once per week, and FL only once every two weeks. On 3/7/2022 we adjusted the formula for active cases to reflect the Omicron Variant which is documented to cause lower rates of serious and severe illness. To produce these trends we analyze daily updates from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.For more information about COVID-19 trends, see our country level trends story map and the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.Feature layer generated from running the Join Features solution that is the basis for daily updates for the U.S. County COVID-19 Tends Story Map.

  15. COVID-19 monthly confirmed and death case development South Korea 2020-2023

    • statista.com
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 monthly confirmed and death case development South Korea 2020-2023 [Dataset]. https://www.statista.com/statistics/1098721/south-korea-coronavirus-confirmed-and-death-number/
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Jul 3, 2023
    Area covered
    South Korea
    Description

    As of July 3, 2023, South Korea has confirmed a total of 32,256,154 cases of coronavirus (COVID-19) within the country, including 35,071 deaths. South Korea's handling of the coronavirus (COVID-19) was initially widely praised, though the government's handling of vaccine distribution has been criticized. After the first wave lasted till April, Seoul and the metropolitan areas were hit hard by a few group infections during the second wave in August 2020. This was followed by a fourth wave, driven by the delta variant and low vaccination rates, leading to rising figures. Though the country has since achieved high vaccination rates, the omicron variant led to record new daily cases in 2022.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  16. f

    Table_4_A comprehensive analysis of the efficacy and effectiveness of...

    • frontiersin.figshare.com
    docx
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaofeng He; Jiao Su; Yu’nan Ma; Wenping Zhang; Shixing Tang (2023). Table_4_A comprehensive analysis of the efficacy and effectiveness of COVID-19 vaccines.docx [Dataset]. http://doi.org/10.3389/fimmu.2022.945930.s009
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    Frontiers
    Authors
    Xiaofeng He; Jiao Su; Yu’nan Ma; Wenping Zhang; Shixing Tang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    It is urgently needed to update the comprehensive analysis about the efficacy or effectiveness of COVID-19 vaccines especially during the COVID-19 pandemic caused by SARS-CoV-2 Delta and Omicron variants. In general, the current COVID-19 vaccines showed a cumulative efficacy of 66.4%, 79.7%, and 93.6% to prevent SARS-CoV-2 infection, symptomatic COVID-19, and severe COVID-19, respectively, but could not prevent the asymptomatic infection of SARS-CoV-2. Furthermore, the current COVID-19 vaccines could effectively prevent COVID-19 caused by the Delta variant although the incidence of breakthrough infection of the SARS-CoV-2 Delta variant increased when the intervals post full vaccination extended, suggesting the waning effectiveness of COVID-19 vaccines. In addition, one-dose booster immunization showed an effectiveness of 74.5% to prevent COVID-19 caused by the Delta variant. However, current COVID-19 vaccines could not prevent the infection of Omicron sub-lineage BA.1.1.529 and had about 50% effectiveness to prevent COVID-19 caused by Omicron sub-lineage BA.1.1.529. Furthermore, the effectiveness was 87.6% and 90.1% to prevent severe COVID-19 and COVID-19-related death caused by Omicron sub-lineage BA.2, respectively, while one-dose booster immunization could enhance the effectiveness of COVID-19 vaccines to prevent the infection and COVID-19 caused by Omicron sub-lineage BA.1.1.529 and sub-lineage BA.2. Two-dose booster immunization showed an increased effectiveness of 81.8% against severe COVID-19 caused by the Omicron sub-lineage BA.1.1.529 variant compared with one-dose booster immunization. The effectiveness of the booster immunization with RNA-based vaccine BNT162b2 or mRNA-1273 was over 75% against severe COVID-19 more than 17 weeks after booster immunization whereas the heterogenous booster immunization showed better effectiveness than homologous booster immunization. In summary, the current COVID-19 vaccines could effectively protect COVID-19 caused by Delta and Omicron variants but was less effective against Omicron variant infection. One-dose booster immunization could enhance protection capability, and two-dose booster immunization could provide additional protection against severe COVID-19.

  17. Age distribution of COVID-19 death cases South Korea 2023, by age group

    • statista.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Age distribution of COVID-19 death cases South Korea 2023, by age group [Dataset]. https://www.statista.com/statistics/1105080/south-korea-coronavirus-deaths-by-age/
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 28, 2023
    Area covered
    South Korea
    Description

    As of August 28, 2023, around 59.8 percent of the patients who died from novel coronavirus (COVID-19) in South Korea were aged 80 years or older. This was despite older people making up only a small percentage of all COVID-19 cases in South Korea. A fourth wave fueled by the delta and omicron variants led to a record rate of new daily cases in 2022, which once again began to decline in 2023.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  18. COVID-19 confirmed case, death and recovery trend in Hong Kong 2020-2022

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 confirmed case, death and recovery trend in Hong Kong 2020-2022 [Dataset]. https://www.statista.com/statistics/1105425/hong-kong-novel-coronavirus-covid19-confirmed-death-recovered-trend/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 22, 2020 - Jun 7, 2022
    Area covered
    Hong Kong
    Description

    The coronavirus (COVID-19) pandemic has spread swiftly from the Chinese city Wuhan across the world. In Hong Kong, the number of active cases amounted to 260,919 with 9,389 deaths as of June 7, 2022. The financial hub was one of the places which were able to flatten the pandemic curve for a long time before the Omicron variant. To boost the low inoculation rate, Hong Kong government has widened the COVID-19 vaccine access to all residents aged 16 and older.

  19. f

    DataSheet1_Variant-specific deleterious mutations in the SARS-CoV-2 genome...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md. Aminul Islam; Shatila Shahi; Abdullah Al Marzan; Mohammad Ruhul Amin; Mohammad Nayeem Hasan; M. Nazmul Hoque; Ajit Ghosh; Abanti Barua; Abbas Khan; Kuldeep Dhama; Chiranjib Chakraborty; Prosun Bhattacharya; Dong-Qing Wei (2023). DataSheet1_Variant-specific deleterious mutations in the SARS-CoV-2 genome reveal immune responses and potentials for prophylactic vaccine development.xlsx [Dataset]. http://doi.org/10.3389/fphar.2023.1090717.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Md. Aminul Islam; Shatila Shahi; Abdullah Al Marzan; Mohammad Ruhul Amin; Mohammad Nayeem Hasan; M. Nazmul Hoque; Ajit Ghosh; Abanti Barua; Abbas Khan; Kuldeep Dhama; Chiranjib Chakraborty; Prosun Bhattacharya; Dong-Qing Wei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has had a disastrous effect worldwide during the previous three years due to widespread infections with SARS-CoV-2 and its emerging variations. More than 674 million confirmed cases and over 6.7 million deaths have been attributed to successive waves of SARS-CoV-2 infections as of 29th January 2023. Similar to other RNA viruses, SARS-CoV-2 is more susceptible to genetic evolution and spontaneous mutations over time, resulting in the continual emergence of variants with distinct characteristics. Spontaneous mutations of SARS-CoV-2 variants increase its transmissibility, virulence, and disease severity and diminish the efficacy of therapeutics and vaccines, resulting in vaccine-breakthrough infections and re-infection, leading to high mortality and morbidity rates.Materials and methods: In this study, we evaluated 10,531 whole genome sequences of all reported variants globally through a computational approach to assess the spread and emergence of the mutations in the SARS-CoV-2 genome. The available data sources of NextCladeCLI 2.3.0 (https://clades.nextstrain.org/) and NextStrain (https://nextstrain.org/) were searched for tracking SARS-CoV-2 mutations, analysed using the PROVEAN, Polyphen-2, and Predict SNP mutational analysis tools and validated by Machine Learning models.Result: Compared to the Wuhan-Hu-1 reference strain NC 045512.2, genome-wide annotations showed 16,954 mutations in the SARS-CoV-2 genome. We determined that the Omicron variant had 6,307 mutations (retrieved sequence:1947), including 67.8% unique mutations, more than any other variant evaluated in this study. The spike protein of the Omicron variant harboured 876 mutations, including 443 deleterious mutations. Among these deleterious mutations, 187 were common and 256 were unique non-synonymous mutations. In contrast, after analysing 1,884 sequences of the Delta variant, we discovered 4,468 mutations, of which 66% were unique, and not previously reported in other variants. Mutations affecting spike proteins are mostly found in RBD regions for Omicron, whereas most of the Delta variant mutations drawn to focus on amino acid regions ranging from 911 to 924 in the context of epitope prediction (B cell & T cell) and mutational stability impact analysis protruding that Omicron is more transmissible.Discussion: The pathogenesis of the Omicron variant could be prevented if the deleterious and persistent unique immunosuppressive mutations can be targeted for vaccination or small-molecule inhibitor designing. Thus, our findings will help researchers monitor and track the continuously evolving nature of SARS-CoV-2 strains, the associated genetic variants, and their implications for developing effective control and prophylaxis strategies.

  20. Age comparison of COVID-19 fatality rate South Korea 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Age comparison of COVID-19 fatality rate South Korea 2023 [Dataset]. https://www.statista.com/statistics/1105088/south-korea-coronavirus-mortality-rate-by-age/
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 28, 2023
    Area covered
    South Korea
    Description

    As of August 28, 2023, the fatality rate of novel coronavirus (COVID-19) in South Korea stood at around 1.7 percent among people aged 80 year and older. This made them the most vulnerable age group, followed by people in their seventies. After the first wave lasted till April and the second wave in August 2020, Korea faced a fourth wave fueled by the delta and omicron variants in 2022.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
Organization logo

COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

Explore at:
170 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 25, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

The difficulties of death figures

This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

Where are these numbers coming from?

The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

Search
Clear search
Close search
Google apps
Main menu