Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 195 countries was 8.37 deaths per 1000 people. The highest value was in Ukraine: 21.4 deaths per 1000 people and the lowest value was in Qatar: 1.08 deaths per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
As of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
In 2024, Myanmar had the highest crude death rate among the Southeast Asian countries, with 8.9 deaths per thousand population. That year, Singapore had the lowest crude death rate, with 5.4 deaths per thousand population.Factors that influence the death rateThe death rate, also called mortality rate, is generally influenced by various factors such as the social environment, diseases, health facilities and services as well as the food supply of the respective countries. Myanmar’s government spent five percent of its public budget on health in 2016. In 2020, health expenditure per capita in Myanmar amounted to around 72 U.S. dollars. The Maldives had the lowest crude death rate in the Asia-Pacific region in 2024. There, health expenditure accounted for 13.73 percent of the country’s GDP. Furthermore, the share of undernourished people was at around three percent in Myanmar in 2020. Within Southeast Asia, Myanmar has also been one of the poorest countries. In 2020, the country’s GDP per capita was estimated at 1.15 thousand U.S. dollars, the lowest across the Asia-Pacific region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>World death rate for 2024 was <strong>7.76</strong>, a <strong>2.35% increase</strong> from 2023.</li>
<li>World death rate for 2023 was <strong>7.58</strong>, a <strong>1.68% decline</strong> from 2022.</li>
<li>World death rate for 2022 was <strong>7.71</strong>, a <strong>11.54% decline</strong> from 2021.</li>
</ul>Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.S. death rate for 2024 was <strong>9.23</strong>, a <strong>0.28% increase</strong> from 2023.</li>
<li>U.S. death rate for 2023 was <strong>9.20</strong>, a <strong>6.12% decline</strong> from 2022.</li>
<li>U.S. death rate for 2022 was <strong>9.80</strong>, a <strong>5.77% decline</strong> from 2021.</li>
</ul>Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2017 based on 97 countries was 7.4 homicides per 100,000 people. The highest value was in El Salvador: 61.8 homicides per 100,000 people and the lowest value was in Japan: 0.2 homicides per 100,000 people. The indicator is available from 1990 to 2017. Below is a chart for all countries where data are available.
North Korea had the world's highest death rate from air pollution in 2021, at 279 per 100,000 inhabitants. This was roughly three times higher than the global average, and more than 33 times higher than the death rate in Finland. High-income countries typically have lower deaths rates from air pollution than those in developing regions. This is especially the case when looking at death rates among children from air pollution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This scatter chart displays death rate (per 1,000 people) against health expenditure per capita (current US$) in Western Africa. The data is about countries.
COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
As of 2022, the countries with the highest death rates worldwide were Ukraine, Bulgaria, and Moldova. In these countries, there were 17 to 21 deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just one death per 1,000 people. Leading causes of death The leading causes of death worldwide are by far, ischaemic heart disease and stroke, accounting for a combined 27 percent of all deaths in 2019. In that year, there were 8.89 million deaths worldwide from ischaemic heart disease and 6.19 million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2022, there were around 3.27 million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined 40 percent of all deaths in 2022. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around 65,790 deaths among men alone in the year 2024. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2022, the fourth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019.
This scatter chart displays death rate (per 1,000 people) against health expenditure per capita (current US$) in Southern Asia. The data is about countries.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Japanese Only: Death Rate: Per 1000 Person data was reported at 10.100 % in Jul 2018. This records an increase from the previous number of 9.600 % for Jun 2018. Vital Statistics: Japanese Only: Death Rate: Per 1000 Person data is updated monthly, averaging 8.700 % from Jan 1994 (Median) to Jul 2018, with 295 observations. The data reached an all-time high of 12.800 % in Feb 2018 and a record low of 6.300 % in Jun 1994. Vital Statistics: Japanese Only: Death Rate: Per 1000 Person data remains active status in CEIC and is reported by Ministry of Health, Labour and Welfare. The data is categorized under Global Database’s Japan – Table JP.G005: Vital Statistics.
In 2021, the average mortality rate across OECD countries from preventable causes stood at 158 deaths per 100,000 population. This varied widely from just 83 deaths in Israel to 435 preventable deaths in Mexico per 100,000 population. The OECD defines preventable mortality as causes of death amongst people aged under 75 years that can be mainly avoided through effective public health and primary prevention interventions (i.e. before the onset of disease/injury, to reduce incidence). Treatable (or amenable mortality is defined as causes of death that can be mainly avoided through timely and effective health care interventions including secondary prevention and treatment (i.e. after the onset of disease, to reduce case fatality). This statistic presents the mortality rates from preventable causes worldwide in 2021, by country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Number of Deaths Ages 15-19 Years data was reported at 3,844.000 Person in 2019. This records a decrease from the previous number of 3,881.000 Person for 2018. Colombia CO: Number of Deaths Ages 15-19 Years data is updated yearly, averaging 4,904.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 6,703.000 Person in 2000 and a record low of 3,844.000 Person in 2019. Colombia CO: Number of Deaths Ages 15-19 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Health Statistics. Number of deaths of adolescents ages 15-19 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
Goal 3Ensure healthy lives and promote well-being for all at all agesTarget 3.1: By 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live birthsIndicator 3.1.1: Maternal mortality ratioSH_STA_MORT: Maternal mortality ratioIndicator 3.1.2: Proportion of births attended by skilled health personnelSH_STA_BRTC: Proportion of births attended by skilled health personnel (%)Target 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live birthsIndicator 3.2.1: Under-5 mortality rateSH_DYN_IMRTN: Infant deaths (number)SH_DYN_MORT: Under-five mortality rate, by sex (deaths per 1,000 live births)SH_DYN_IMRT: Infant mortality rate (deaths per 1,000 live births)SH_DYN_MORTN: Under-five deaths (number)Indicator 3.2.2: Neonatal mortality rateSH_DYN_NMRTN: Neonatal deaths (number)SH_DYN_NMRT: Neonatal mortality rate (deaths per 1,000 live births)Target 3.3: By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseasesIndicator 3.3.1: Number of new HIV infections per 1,000 uninfected population, by sex, age and key populationsSH_HIV_INCD: Number of new HIV infections per 1,000 uninfected population, by sex and age (per 1,000 uninfected population)Indicator 3.3.2: Tuberculosis incidence per 100,000 populationSH_TBS_INCD: Tuberculosis incidence (per 100,000 population)Indicator 3.3.3: Malaria incidence per 1,000 populationSH_STA_MALR: Malaria incidence per 1,000 population at risk (per 1,000 population)Indicator 3.3.4: Hepatitis B incidence per 100,000 populationSH_HAP_HBSAG: Prevalence of hepatitis B surface antigen (HBsAg) (%)Indicator 3.3.5: Number of people requiring interventions against neglected tropical diseasesSH_TRP_INTVN: Number of people requiring interventions against neglected tropical diseases (number)Target 3.4: By 2030, reduce by one third premature mortality from non-communicable diseases through prevention and treatment and promote mental health and well-beingIndicator 3.4.1: Mortality rate attributed to cardiovascular disease, cancer, diabetes or chronic respiratory diseaseSH_DTH_NCOM: Mortality rate attributed to cardiovascular disease, cancer, diabetes or chronic respiratory disease (probability)SH_DTH_NCD: Number of deaths attributed to non-communicable diseases, by type of disease and sex (number)Indicator 3.4.2: Suicide mortality rateSH_STA_SCIDE: Suicide mortality rate, by sex (deaths per 100,000 population)SH_STA_SCIDEN: Number of deaths attributed to suicide, by sex (number)Target 3.5: Strengthen the prevention and treatment of substance abuse, including narcotic drug abuse and harmful use of alcoholIndicator 3.5.1: Coverage of treatment interventions (pharmacological, psychosocial and rehabilitation and aftercare services) for substance use disordersSH_SUD_ALCOL: Alcohol use disorders, 12-month prevalence (%)SH_SUD_TREAT: Coverage of treatment interventions (pharmacological, psychosocial and rehabilitation and aftercare services) for substance use disorders (%)Indicator 3.5.2: Alcohol per capita consumption (aged 15 years and older) within a calendar year in litres of pure alcoholSH_ALC_CONSPT: Alcohol consumption per capita (aged 15 years and older) within a calendar year (litres of pure alcohol)Target 3.6: By 2020, halve the number of global deaths and injuries from road traffic accidentsIndicator 3.6.1: Death rate due to road traffic injuriesSH_STA_TRAF: Death rate due to road traffic injuries, by sex (per 100,000 population)Target 3.7: By 2030, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmesIndicator 3.7.1: Proportion of women of reproductive age (aged 15–49 years) who have their need for family planning satisfied with modern methodsSH_FPL_MTMM: Proportion of women of reproductive age (aged 15-49 years) who have their need for family planning satisfied with modern methods (% of women aged 15-49 years)Indicator 3.7.2: Adolescent birth rate (aged 10–14 years; aged 15–19 years) per 1,000 women in that age groupSP_DYN_ADKL: Adolescent birth rate (per 1,000 women aged 15-19 years)Target 3.8: Achieve universal health coverage, including financial risk protection, access to quality essential health-care services and access to safe, effective, quality and affordable essential medicines and vaccines for allIndicator 3.8.1: Coverage of essential health servicesSH_ACS_UNHC: Universal health coverage (UHC) service coverage indexIndicator 3.8.2: Proportion of population with large household expenditures on health as a share of total household expenditure or incomeSH_XPD_EARN25: Proportion of population with large household expenditures on health (greater than 25%) as a share of total household expenditure or income (%)SH_XPD_EARN10: Proportion of population with large household expenditures on health (greater than 10%) as a share of total household expenditure or income (%)Target 3.9: By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contaminationIndicator 3.9.1: Mortality rate attributed to household and ambient air pollutionSH_HAP_ASMORT: Age-standardized mortality rate attributed to household air pollution (deaths per 100,000 population)SH_STA_AIRP: Crude death rate attributed to household and ambient air pollution (deaths per 100,000 population)SH_STA_ASAIRP: Age-standardized mortality rate attributed to household and ambient air pollution (deaths per 100,000 population)SH_AAP_MORT: Crude death rate attributed to ambient air pollution (deaths per 100,000 population)SH_AAP_ASMORT: Age-standardized mortality rate attributed to ambient air pollution (deaths per 100,000 population)SH_HAP_MORT: Crude death rate attributed to household air pollution (deaths per 100,000 population)Indicator 3.9.2: Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene (exposure to unsafe Water, Sanitation and Hygiene for All (WASH) services)SH_STA_WASH: Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene (deaths per 100,000 population)Indicator 3.9.3: Mortality rate attributed to unintentional poisoningSH_STA_POISN: Mortality rate attributed to unintentional poisonings, by sex (deaths per 100,000 population)Target 3.a: Strengthen the implementation of the World Health Organization Framework Convention on Tobacco Control in all countries, as appropriateIndicator 3.a.1: Age-standardized prevalence of current tobacco use among persons aged 15 years and olderSH_PRV_SMOK: Age-standardized prevalence of current tobacco use among persons aged 15 years and older, by sex (%)Target 3.b: Support the research and development of vaccines and medicines for the communicable and non-communicable diseases that primarily affect developing countries, provide access to affordable essential medicines and vaccines, in accordance with the Doha Declaration on the TRIPS Agreement and Public Health, which affirms the right of developing countries to use to the full the provisions in the Agreement on Trade-Related Aspects of Intellectual Property Rights regarding flexibilities to protect public health, and, in particular, provide access to medicines for allIndicator 3.b.1: Proportion of the target population covered by all vaccines included in their national programmeSH_ACS_DTP3: Proportion of the target population with access to 3 doses of diphtheria-tetanus-pertussis (DTP3) (%)SH_ACS_MCV2: Proportion of the target population with access to measles-containing-vaccine second-dose (MCV2) (%)SH_ACS_PCV3: Proportion of the target population with access to pneumococcal conjugate 3rd dose (PCV3) (%)SH_ACS_HPV: Proportion of the target population with access to affordable medicines and vaccines on a sustainable basis, human papillomavirus (HPV) (%)Indicator 3.b.2: Total net official development assistance to medical research and basic health sectorsDC_TOF_HLTHNT: Total official development assistance to medical research and basic heath sectors, net disbursement, by recipient countries (millions of constant 2018 United States dollars)DC_TOF_HLTHL: Total official development assistance to medical research and basic heath sectors, gross disbursement, by recipient countries (millions of constant 2018 United States dollars)Indicator 3.b.3: Proportion of health facilities that have a core set of relevant essential medicines available and affordable on a sustainable basisSH_HLF_EMED: Proportion of health facilities that have a core set of relevant essential medicines available and affordable on a sustainable basis (%)Target 3.c: Substantially increase health financing and the recruitment, development, training and retention of the health workforce in developing countries, especially in least developed countries and small island developing StatesIndicator 3.c.1: Health worker density and distributionSH_MED_DEN: Health worker density, by type of occupation (per 10,000 population)SH_MED_HWRKDIS: Health worker distribution, by sex and type of occupation (%)Target 3.d: Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national and global health risksIndicator 3.d.1: International Health Regulations (IHR) capacity and health emergency preparednessSH_IHR_CAPS: International Health Regulations (IHR) capacity, by type of IHR capacity (%)Indicator 3.d.2: Percentage of bloodstream infections due to selected antimicrobial-resistant organismsiSH_BLD_MRSA: Percentage of bloodstream infection due to methicillin-resistant Staphylococcus aureus (MRSA) among patients seeking care and whose
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iran IR: Number of Deaths Ages 20-24 Years data was reported at 6,136.000 Person in 2019. This records a decrease from the previous number of 6,390.000 Person for 2018. Iran IR: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 9,191.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 13,846.000 Person in 2008 and a record low of 6,136.000 Person in 2019. Iran IR: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.