100+ datasets found
  1. Excess Deaths Associated with COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Excess Deaths Associated with COVID-19 [Dataset]. https://catalog.data.gov/dataset/excess-deaths-associated-with-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.

  2. Countries with the highest death rates in 2023

    • statista.com
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest death rates in 2023 [Dataset]. https://www.statista.com/statistics/562733/ranking-of-20-countries-with-highest-death-rates/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    As of 2023, the countries with the highest death rates worldwide were Monaco, Bulgaria, and Latvia. In these countries, there were ** to ** deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just *** death per 1,000 people. Leading causes of death The leading causes of death worldwide are, by far, cardiovascular diseases, accounting for ** percent of all deaths in 2021. That year, there were **** million deaths worldwide from ischaemic heart disease and **** million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2023, there were around **** million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined ** percent of all deaths in 2023. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around ****** deaths among men alone in the year 2025. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2023, the tenth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019, and it was the third leading cause of death in the U.S. during those years.

  3. f

    Projections of Global Mortality and Burden of Disease from 2002 to 2030

    • plos.figshare.com
    doc
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin D Mathers; Dejan Loncar (2023). Projections of Global Mortality and Burden of Disease from 2002 to 2030 [Dataset]. http://doi.org/10.1371/journal.pmed.0030442
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Colin D Mathers; Dejan Loncar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundGlobal and regional projections of mortality and burden of disease by cause for the years 2000, 2010, and 2030 were published by Murray and Lopez in 1996 as part of the Global Burden of Disease project. These projections, which are based on 1990 data, continue to be widely quoted, although they are substantially outdated; in particular, they substantially underestimated the spread of HIV/AIDS. To address the widespread demand for information on likely future trends in global health, and thereby to support international health policy and priority setting, we have prepared new projections of mortality and burden of disease to 2030 starting from World Health Organization estimates of mortality and burden of disease for 2002. This paper describes the methods, assumptions, input data, and results. Methods and FindingsRelatively simple models were used to project future health trends under three scenarios—baseline, optimistic, and pessimistic—based largely on projections of economic and social development, and using the historically observed relationships of these with cause-specific mortality rates. Data inputs have been updated to take account of the greater availability of death registration data and the latest available projections for HIV/AIDS, income, human capital, tobacco smoking, body mass index, and other inputs. In all three scenarios there is a dramatic shift in the distribution of deaths from younger to older ages and from communicable, maternal, perinatal, and nutritional causes to noncommunicable disease causes. The risk of death for children younger than 5 y is projected to fall by nearly 50% in the baseline scenario between 2002 and 2030. The proportion of deaths due to noncommunicable disease is projected to rise from 59% in 2002 to 69% in 2030. Global HIV/AIDS deaths are projected to rise from 2.8 million in 2002 to 6.5 million in 2030 under the baseline scenario, which assumes coverage with antiretroviral drugs reaches 80% by 2012. Under the optimistic scenario, which also assumes increased prevention activity, HIV/AIDS deaths are projected to drop to 3.7 million in 2030. Total tobacco-attributable deaths are projected to rise from 5.4 million in 2005 to 6.4 million in 2015 and 8.3 million in 2030 under our baseline scenario. Tobacco is projected to kill 50% more people in 2015 than HIV/AIDS, and to be responsible for 10% of all deaths globally. The three leading causes of burden of disease in 2030 are projected to include HIV/AIDS, unipolar depressive disorders, and ischaemic heart disease in the baseline and pessimistic scenarios. Road traffic accidents are the fourth leading cause in the baseline scenario, and the third leading cause ahead of ischaemic heart disease in the optimistic scenario. Under the baseline scenario, HIV/AIDS becomes the leading cause of burden of disease in middle- and low-income countries by 2015. ConclusionsThese projections represent a set of three visions of the future for population health, based on certain explicit assumptions. Despite the wide uncertainty ranges around future projections, they enable us to appreciate better the implications for health and health policy of currently observed trends, and the likely impact of fairly certain future trends, such as the ageing of the population, the continued spread of HIV/AIDS in many regions, and the continuation of the epidemiological transition in developing countries. The results depend strongly on the assumption that future mortality trends in poor countries will have a relationship to economic and social development similar to those that have occurred in the higher-income countries.

  4. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  5. Excess deaths recorded in Europe 2017-2025

    • statista.com
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Excess deaths recorded in Europe 2017-2025 [Dataset]. https://www.statista.com/statistics/1417204/yearly-excess-deaths-in-europe/
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    As a result of the COVID-19 pandemic, the number of excess deaths in Europe reached a peak in 2020 with almost 400 thousand. Excess deaths in Europe also remained relatively high in 2021 and 2022. Through week 27 in 2025, around 49 thousand excess deaths were recorded. Excess death is a metric in epidemiology of the increase in the number of deaths over a time period and/or in a specific group when compared to the predicted value or statistical trend over a reference period or in a reference population.

  6. Weekly all-cause mortality surveillance: 2023 to 2024

    • gov.uk
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UK Health Security Agency (2024). Weekly all-cause mortality surveillance: 2023 to 2024 [Dataset]. https://www.gov.uk/government/statistics/weekly-all-cause-mortality-surveillance-2023-to-2024
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    UK Health Security Agency
    Description

    The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.

    Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.

    Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.

    This page includes reports published from 13 July 2023 to the present.

    Reports are also available for:

    Please direct any enquiries to enquiries@ukhsa.gov.uk

    Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.

  7. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  8. f

    Drug mortality analysis do file.

    • plos.figshare.com
    txt
    Updated Aug 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Moghtaderi; Mark S. Zocchi; Jesse M. Pines; Arvind Venkat; Bernard Black (2023). Drug mortality analysis do file. [Dataset]. http://doi.org/10.1371/journal.pone.0281227.s004
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ali Moghtaderi; Mark S. Zocchi; Jesse M. Pines; Arvind Venkat; Bernard Black
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveU.S. drug-related overdose deaths and Emergency Department (ED) visits rose in 2020 and again in 2021. Many academic studies and the news media attributed this rise primarily to increased drug use resulting from the societal disruptions related to the coronavirus (COVID-19) pandemic. A competing explanation is that higher overdose deaths and ED visits may have reflected a continuation of pre-pandemic trends in synthetic-opioid deaths, which began to rise in mid-2019. We assess the evidence on whether increases in overdose deaths and ED visits are likely to be related primarily to the COVID-19 pandemic, increased synthetic-opioid use, or some of both.MethodsWe use national data from the Centers for Disease Control and Prevention (CDC) on rolling 12-month drug-related deaths (2015–2021); CDC data on monthly ED visits (2019-September 2020) for EDs in 42 states; and ED visit data for 181 EDs in 24 states staffed by a national ED physician staffing group (January 2016-June 2022). We study drug overdose deaths per 100,000 persons during the pandemic period, and ED visits for drug overdoses, in both cases compared to predicted levels based on pre-pandemic trends.ResultsMortality. National overdose mortality increased from 21/100,000 in 2019 to 26/100,000 in 2020 and 30/100,000 in 2021. The rise in mortality began in mid-to-late half of 2019, and the 2020 increase is well-predicted by models that extrapolate pre-pandemic trends for rolling 12-month mortality to the pandemic period. Placebo analyses (which assume the pandemic started earlier or later than March 2020) do not provide evidence for a change in trend in or soon after March 2020. State-level analyses of actual mortality, relative to mortality predicted based on pre-pandemic trends, show no consistent pattern. The state-level results support state heterogeneity in overdose mortality trends, and do not support the pandemic being a major driver of overdose mortality.ED visits. ED overdose visits rose during our sample period, reflecting a worsening opioid epidemic, but rose at similar rates during the pre-pandemic and pandemic periods.ConclusionThe reasons for rising overdose mortality in 2020 and 2021 cannot be definitely determined. We lack a control group and thus cannot assess causation. However, the observed increases can be largely explained by a continuation of pre-pandemic trends toward rising synthetic-opioid deaths, principally fentanyl, that began in mid-to-late 2019. We do not find evidence supporting the pandemic as a major driver of rising mortality. Policymakers need to directly address the synthetic opioid epidemic, and not expect a respite as the pandemic recedes.

  9. o

    Deaths Involving COVID-19 by Vaccination Status

    • data.ontario.ca
    • gimi9.com
    • +3more
    csv, docx, xlsx
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://data.ontario.ca/dataset/deaths-involving-covid-19-by-vaccination-status
    Explore at:
    docx(26086), docx(29332), xlsx(10972), csv(321473), xlsx(11053)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool

    Data includes:

    • Date on which the death occurred
    • Age group
    • 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated
    • 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated
    • 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster

    Additional notes

    As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm.

    As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category.

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON.

    “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results.

    Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.

    Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.

    Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported.

    Rates for the most recent days are subject to reporting lags

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

  10. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 23, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  11. D

    COVID-19 Deaths Over Time

    • data.sfgov.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Deaths Over Time [Dataset]. https://data.sfgov.org/w/g2di-xufg/ikek-yizv?cur=MaBhByetszG&from=j5znMsihflf
    Explore at:
    csv, json, tsv, xml, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 17, 2025
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This dataset represents San Francisco COVID-19 related deaths by day. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.

    B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death data is provided by the California Department of Public Health.

    It takes time to process this data. Because of this, death totals may increase or decrease over time.

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.

    Dataset will not update on the business day following any federal holiday.

    D. HOW TO USE THIS DATASET This dataset shows new deaths and cumulative deaths by date of death. New deaths are the count of deaths on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths up to the date listed.

    Use the Deaths by Population Characteristics Over Time dataset to see deaths by different subgroups including race/ethnicity, age, and gender.

    E. CHANGE LOG

    • 9/11/2023 – on this date, we began using an updated definition of a COVID-19 death to align with the California Department of Public Health. This change was applied to COVID-19 deaths retrospectively beginning on 1/1/2023. More information about the recommendation by the Council of State and Territorial Epidemiologists that motivated this change can be found https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">here.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.

  12. Additional deaths of despair given a 1.6% increase in US unemployment...

    • statista.com
    Updated Sep 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Additional deaths of despair given a 1.6% increase in US unemployment 2020-2029 [Dataset]. https://www.statista.com/statistics/1155389/projected-deaths-of-despair-if-16-percent-unemployment-growth-us/
    Explore at:
    Dataset updated
    Sep 22, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Based on the number of deaths of despair in 2018 and projected levels of unemployment from 2020 to 2029, it is estimated that the additional number of deaths in 2023 could range from 2,017 to 21,457 depending on the rate of economic recovery after the COVID-19 recession. This statistic shows the possible additional deaths of despair following the COVID-19 recession for select economic scenarios, given a 1.6 percent increase in unemployment, in the United States from 2020 to 2029.

  13. Excess mortality in England and English regions: March 2020 to December 2023...

    • gov.uk
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Health Improvement and Disparities (2024). Excess mortality in England and English regions: March 2020 to December 2023 [Dataset]. https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
    Explore at:
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for Health Improvement and Disparities
    Area covered
    England
    Description

    This analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.

    From February 2024, excess mortality reporting is available at: Excess mortality in England.

    Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.

    The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:

    • England
    • English regions

    ‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.

    In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.

    For previous reports, see:

    If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.

    Other excess mortality analyses

    We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.

  14. f

    Bolsonaro votes vs excess of COVID-19 deaths per state BRA Far Right ideas...

    • figshare.com
    png
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Morato (2023). Bolsonaro votes vs excess of COVID-19 deaths per state BRA Far Right ideas can change social behaviors and increase risk of having Covid-19 [Dataset]. http://doi.org/10.6084/m9.figshare.14721150.v2
    Explore at:
    pngAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Eric Morato
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Disclosure of information with far right's ideas, negationism of science and anti-vaccine attitude x Risk of COVID-19The electoral preference by Bolsonaro in the first round of Brazil presidential election 2018 per state, shows a strong predictive value of the amount of deaths by Covid-19, excess death per 100,000, increased P-score and intensity in reducing Brazilian population growth in the 1st Tour 2021### Content of this DatabaseIn the period from January to April (1st Quadrimester Q1) from 2021 and 2019 per state (UF) we show:Main variables for each of the 27 Brazilian states and 3 States groups and 1 country BRA1. The main population rates: - Number deaths, excess deaths, births, birth rate, mortality rate, vegetative growth, p-score, total population, population > 70A., Demographic density2. The main rates of Pandemic by Coronavirus - Covid-19: - No. Total cases, cases Q1, Nº Total deaths, Nº Q1 deaths, Total deaths / 100000 hab, mortality rate, cases / 100000 hab3. The main metrics of the 2018 presidential election: - Voters, voting paragraphs, nº of votes in Bolsonararo 1st turn, nº of abstinences.Groups of Brazilian UFS (Federation States)1. States that Bolsonaro received more than 50% of the votes in the 1st turn2. States that Bolsonaro received less than 50% of the votes in the 1st turn and more than 50% in the 2nd turn3. States that Bolsonaro received less than 50% of the votes in the 1st and 2nd shifts4. Sum of the 27 Brazilian states

  15. a

    Drug Overdose Mortality

    • egis-lacounty.hub.arcgis.com
    • data.lacounty.gov
    Updated Jan 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). Drug Overdose Mortality [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/drug-overdose-mortality
    Explore at:
    Dataset updated
    Jan 8, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    This indicator includes unintentional overdoses, homicides, and suicides from drug overdose. Death rate has been age-adjusted to the 2000 U.S. standard population. ICD-10 codes used to identify drug overdose related deaths are X40-X44, X60-X64, X85, and Y10-Y14.Drug overdose deaths have increased dramatically in the US over the past two decades. The first wave of deaths in the 1990s largely involved prescription opioids and was a consequence of increased prescribing of these drugs by medical providers. In the second wave that began in 2010, there was a rapid increase in the number of deaths involving heroin and, in the current wave that started in 2013, there has been a rise in the number of overdose deaths involving synthetic opioids, particularly illicitly manufactured fentanyl, which can be found in combination with heroin, counterfeit pills, cocaine, and other drugs. In Los Angeles County in recent years, the vast majority of all drug overdose deaths have involved fentanyl. Important inequities have been noted by sociodemographic characteristics, with low-income and Black individuals found to have the highest overdose death rates. Cities and communities can take an active role in preventing overdose deaths by promoting primary prevention and supporting evidence-based harm reduction and treatment strategies.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  16. c

    Number of Fentanyl Deaths Per Year in U.S., 1999-2023

    • consumershield.com
    csv
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Number of Fentanyl Deaths Per Year in U.S., 1999-2023 [Dataset]. https://www.consumershield.com/articles/fentanyl-deaths-per-year
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States of America
    Description

    The graph illustrates the number of deaths from fentanyl in the United States from 1999 to 2022. The x-axis represents the years, spanning from '99 to '22, while the y-axis displays the annual number of fentanyl-related fatalities. Over this 24-year period, deaths rise dramatically from 730 in 1999 to a peak of 73,838 in 2022. Notable milestones include an increase to 1,742 deaths in 2005, a significant jump to 9,580 in 2015, and a sharp escalation to 70,601 deaths by 2021. The data reveals a consistent and severe upward trend in fentanyl-related deaths, particularly accelerating in the mid-2010s. This information is presented in a line graph format, effectively highlighting the dramatic increase in fatalities due to fentanyl across the United States over the specified years.

  17. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  18. n

    Data from: Estimation of non-health Gross Domestic Product (NHGDP) loss due...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Oct 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paramita Bhattacharya; Denny John; Nirmalya Mukherjee; M. S. Narassima; Jaideep Menon; Amitava Banerjee (2023). Estimation of non-health Gross Domestic Product (NHGDP) loss due to COVID-19 deaths in West Bengal, India [Dataset]. http://doi.org/10.5061/dryad.573n5tbc4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 2, 2023
    Dataset provided by
    Amrita Institute of Medical Sciences and Research Centre
    Manbhum Ananda Ashram Nityananda Trust
    Great Lakes Institute of Management
    Manbhum Ananda Asharan Nityananda Trust
    University College London
    Authors
    Paramita Bhattacharya; Denny John; Nirmalya Mukherjee; M. S. Narassima; Jaideep Menon; Amitava Banerjee
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    West Bengal, India
    Description

    This study estimates the economic losses (GDP), particularly the impact of COVID-19 deaths on non-health components of GDP in West Bengal state. The NHGDP losses were evaluated using cost-of-illness approach. Future NHGDP losses were discounted at 3%. Excess death estimates by the World Health Organisation (WHO) and Global Burden of Disease (GBD) were used. Sensitivity analysis was carried out by varying discount rates and Average Age of Death (AAD). 21,532 deaths in West Bengal since 17th March 2020 till 31st December 2022 decreased the future NHGDP by $0.92 billion. Nearly 90% of loss was due to deaths occurring in above 30 years age-group. The majority of the loss was borne among the 46–60 years age-group. The NHGDP loss/death was $42,646, however, the average loss/death declined with a rise in age. The loss increased to $9.38 billion and $9.42 billion respectively based on GBD and WHO excess death estimates. The loss increased to $1.3 billion by considering the lower age of the interval as AAD. At 5% and 10% discount rates, the losses reduced to $0.769 billion and $0.549 billion respectively. Results from the study suggest that COVID-19 contributed to major economic loss in West Bengal. The mortality and morbidity caused by COVID-19, the substantial economic costs at individual and population levels in West Bengal, and probably across India and other countries, is another argument for better infection control strategies across the globe to end the impact of this epidemic. Methods Various open domains were used to gather data on COVID-19 deaths in West Bengal and the aforementioned estimates. Economic losses in terms of Non-Health Gross Domestic Product (NHGDP)among six age-group brackets viz. 0–15, 16–30, 31–45, 46–60, 61–75 and 75 and above were estimated to facilitate comparisons and to initiate advocacy for an increase in health investments against COVID-19. This study used midpoint age as the age of death for all the age brackets. The legal minimum age for working i.e., 15 years. A sensitivity analysis was conducted to determine the effect of age on the overall total NHGDP loss estimate. The model was re-estimated assuming an average age at death to be the starting age of each age-group bracket. Based on existing literature discounted rate of interest to measure the value of life is taken as 2.9%. As a sensitivity analysis, NHGDP loss has also been computed using 5% and 10% of discounted rates of interest.

  19. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  20. f

    Description of the HWs with the greatest increase in excess mortality in...

    • plos.figshare.com
    xls
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Djacinto Monteiro dos Santos; Renata Libonati; Beatriz N. Garcia; João L. Geirinhas; Barbara Bresani Salvi; Eliane Lima e Silva; Julia A. Rodrigues; Leonardo F. Peres; Ana Russo; Renata Gracie; Helen Gurgel; Ricardo M. Trigo (2024). Description of the HWs with the greatest increase in excess mortality in each MR, including date of occurrence (year/month/day), observed increase in mortality, duration and intensity of the HW, and time interval after previous HW at the same location. [Dataset]. http://doi.org/10.1371/journal.pone.0295766.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Djacinto Monteiro dos Santos; Renata Libonati; Beatriz N. Garcia; João L. Geirinhas; Barbara Bresani Salvi; Eliane Lima e Silva; Julia A. Rodrigues; Leonardo F. Peres; Ana Russo; Renata Gracie; Helen Gurgel; Ricardo M. Trigo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The HWs are sorted by excess mortality in percentage.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Excess Deaths Associated with COVID-19 [Dataset]. https://catalog.data.gov/dataset/excess-deaths-associated-with-covid-19
Organization logo

Excess Deaths Associated with COVID-19

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.

Search
Clear search
Close search
Google apps
Main menu