100+ datasets found
  1. Leading causes of death worldwide in 2019

    • statista.com
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/288839/leading-causes-of-death-worldwide/
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, the leading causes of death globally included ischemic heart disease, stroke and chronic obstructive pulmonary disease (COPD). There were **** million deaths from ischemic heart disease at that time and about **** million deaths caused by stroke. In recent history, increases in life expectancy, increases in population and better standards of living have changed the leading causes of death over time. Non-Communicable Disease Deaths The number of deaths due to non-communicable diseases has remained relatively stable in recent years. A large majority of non-communicable or chronic disease deaths globally are caused by cardiovascular diseases, followed by cancer. Various lifestyle choices cause or exacerbate many of these chronic diseases. Drinking, smoking and lack of exercise can contribute to higher rates of non-communicable diseases and early death. It is estimated that the relative risk of death before the age of 65 was ** times greater among those that smoked and never quit. Infectious Disease Deaths Trends indicate that the number of deaths due to infectious diseases have decreased in recent years. However, infectious diseases still disproportionately impact low- and middle-income countries. In 2021, tuberculosis, malaria and HIV/AIDS were still among the leading causes of death in low-income countries. However, the leading causes of death in upper income countries are almost exclusively non-communicable, chronic conditions.

  2. Top ten causes of global deaths 2019

    • statista.com
    Updated Dec 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Top ten causes of global deaths 2019 [Dataset]. https://www.statista.com/statistics/311925/top-ten-causes-of-death-worldwide/
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, the leading causes of death worldwide were ischemic heart disease, stroke, and chronic obstructive pulmonary disease (COPD). That year, ischemic heart disease and stroke accounted for a combined ** percent of all deaths worldwide. Although the leading causes of death worldwide vary by region and country, heart disease is a consistent leading cause of death regardless of income, development, size, or location. Heart disease In 2019, around **** million people worldwide died from ischemic heart disease. In comparison, around **** million people died from lung cancer that year, while *** million died from diabetes. The countries with the highest rates of death due to heart attack and other ischemic heart diseases are Lithuania, Russia, and Slovakia. Although some risk factors for heart disease, such as age and genetics, are unmodifiable, the likelihood of developing heart disease can be greatly reduced through a healthy lifestyle. The biggest modifiable risk factors for heart disease include smoking, an unhealthy diet, being overweight, and a lack of exercise. In 2019, it was estimated that around *** million deaths worldwide due to ischemic heart disease could be attributed to smoking. The leading causes of death in the United States Just as it is the leading cause of death worldwide, heart disease is also the leading cause of death in the United States. In 2023, heart disease accounted for ** percent of all deaths in the United States. Cancer was the second leading cause of death in the U.S. that year, followed by accidents. As of 2023, the odds that a person in the United States will die from heart disease is * in *. However, rates of death due to heart disease have actually declined in the U.S. over the past couple decades. From 2000 to 2022, there was a *** percent decline in heart disease deaths. On the other hand, deaths from Alzheimer’s disease saw an increase of *** percent over this period. Alzheimer’s disease is currently the sixth leading cause of death in the United States, accounting for **** deaths per 100,000 population in 2023.

  3. COVID-19 deaths worldwide as of May 2, 2023, by country and territory

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 deaths worldwide as of May 2, 2023, by country and territory [Dataset]. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.

    Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.

    What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.

  4. Causes of Deaths - Worldwide (1990-2019)

    • kaggle.com
    zip
    Updated May 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Saleh (2022). Causes of Deaths - Worldwide (1990-2019) [Dataset]. https://www.kaggle.com/datasets/saleh846/causes-of-deaths-worldwide/code
    Explore at:
    zip(1258674 bytes)Available download formats
    Dataset updated
    May 11, 2022
    Authors
    Muhammad Saleh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Content:

    This dataset contains the causes of deaths of people worldwide for all ages. This dataset is collected from the website of Our world in Data. https://ourworldindata.org/causes-of-death

    Content:

    This dataset contain five files: 1. under-age-5.csv: This file contains the causes of deaths of people aged below 5 years. 2. age-between-5-and-14.csv: This file contains the causes of deaths of people aged between 5 and 14 years (limits included). 3. age-between-15-and-49.csv: This file contains the causes of deaths of people aged between 15 and 49 years (limits included). 4. age-between-50-and-69.csv: This file contains the causes of deaths of people aged between 50 and 69 years (limits included). 5. above-age-70.csv: This file contains the causes of deaths of people aged above 70 years (limit included).

  5. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Distribution of causes of death worldwide in 2019

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Distribution of causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/1076497/share-of-deaths-worldwide-by-cause/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, around 32.8 percent of all deaths globally were caused by cardiovascular diseases and almost 18 percent were caused by cancer. This statistic shows the distribution of causes of death worldwide in 2019.

  7. G

    Germany DE: Number of Deaths Ages 15-19 Years

    • ceicdata.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Germany DE: Number of Deaths Ages 15-19 Years [Dataset]. https://www.ceicdata.com/en/germany/health-statistics/de-number-of-deaths-ages-1519-years
    Explore at:
    Dataset updated
    Sep 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Germany
    Description

    Germany DE: Number of Deaths Ages 15-19 Years data was reported at 923.000 Person in 2019. This records a decrease from the previous number of 942.000 Person for 2018. Germany DE: Number of Deaths Ages 15-19 Years data is updated yearly, averaging 1,632.000 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 2,544.000 Person in 1990 and a record low of 923.000 Person in 2019. Germany DE: Number of Deaths Ages 15-19 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Health Statistics. Number of deaths of adolescents ages 15-19 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  8. Adult Mortality Rate (2019-2021)

    • kaggle.com
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mikhail (2024). Adult Mortality Rate (2019-2021) [Dataset]. https://www.kaggle.com/datasets/mikhail1681/adult-mortality-rate-2019-2021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Kaggle
    Authors
    Mikhail
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Dear Kaggler! This dataset consists of a main CSV file: Adult mortality rate (2019-2021).csv. This file has been processed, cleaned and prepared for your use. The dataset contains information on mortality rates in different countries of the world and some factors that may affect this rate for 2019-2023.

    The data contains the following columns:

    Countries: Country of study.

    Continent: Continent location of the country.

    Average_Pop(thousands people): Average population of the country under study for 2019-2021 in thousands.

    Average_GDP(M$): Average GDP of the country under study for 2019-2021 in millions of dollars.

    Average_GDP_per_capita: Average GDP per capita of the country under study for 2019-2021 in dollars.

    Average_HEXP($): Health Expenditure Per Capita in the country under study in dollars.

    Development_level: Level of development of the state under study (calculated by GDP per capita of the country). Please note that in this dataset we calculate this indicator only by calculating GDP per capita! Despite the fact that the United Nations (UN) does not have an unambiguous classification of countries into developed, developing and backward based on only one indicator, such as the amount of GDP per capita. It uses a wider range of economic, social and quality indicators to determine the level of development of countries.

    AMR_female(per_1000_female_adults): Average mortality of adult women in the country under study (per 1000 adult women per year) for 2019-2023.

    AMR_male(per_1000_male_adults): Average mortality of adult men in the country under study (per 1000 adult men per year) for 2019-2023.

    Average_CDR: Average crude mortality rate for 2019–2021 in the country under study.

    The dataset also contains additional files: Draft_AMR.csv, Draft_CDR.csv, Draft_Expenses.csv, Draft_GDP.csv, Draft_Population.csv. In fact, the main dataset consists of parts of these files. If you are interested in working more deeply on data cleaning and preparation, you can of course use these files. You can also use these files to create your own dataset. And be careful! Additional files may contain a different number of rows and columns with different names and data types. And of course these files are not cleaned. You will see not only the NaN values, but also other symbols in their place.

    Enjoy your training, my dear Kaggler!

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16192307%2Fc9a98b25b85b43718e5b8109712ba36a%2FDepositphotos_68536025_s-2019.jpg?generation=1711099905559419&alt=media" alt="">

  9. j

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • systems.jhu.edu
    • github.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://systems.jhu.edu/research/public-health/ncov/
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  10. M

    Mexico MX: Number of Deaths Ages 20-24 Years

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Mexico MX: Number of Deaths Ages 20-24 Years [Dataset]. https://www.ceicdata.com/en/mexico/health-statistics/mx-number-of-deaths-ages-2024-years
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Mexico
    Description

    Mexico MX: Number of Deaths Ages 20-24 Years data was reported at 15,746.000 Person in 2019. This records an increase from the previous number of 15,132.000 Person for 2018. Mexico MX: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 11,229.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 15,746.000 Person in 2019 and a record low of 9,650.000 Person in 2005. Mexico MX: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mexico – Table MX.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  11. Number of substance use-related deaths worldwide in 2019

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of substance use-related deaths worldwide in 2019 [Dataset]. https://www.statista.com/statistics/1332129/number-substance-use-related-deaths-worldwide/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, there were around *** million deaths worldwide related to tobacco consumption. During the same year, drug use accounted for around *** thousand deaths worldwide. This statistic illustrates the number of substance use-related deaths worldwide in 2019.

  12. Deaths from eating disorders worldwide from 1990 to 2019

    • abripper.com
    • statista.com
    Updated Aug 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Conor Stewart (2020). Deaths from eating disorders worldwide from 1990 to 2019 [Dataset]. https://abripper.com/lander/abripper.com/index.php?_=%2Fstudy%2F65989%2Fmental-health-worldwide%2F%2341%2FknbtSbwPrE1UM4SH%2BbuJY5IzmCy9B
    Explore at:
    Dataset updated
    Aug 15, 2020
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Conor Stewart
    Description

    This statistic depicts the number of direct deaths from eating disorders worldwide from 1990 to 2019. According to the data, in 2019 there were 318 direct deaths from eating disorders worldwide.

  13. Covid-19 Dataset

    • kaggle.com
    zip
    Updated Aug 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saravana Kumar (2021). Covid-19 Dataset [Dataset]. https://www.kaggle.com/victorsullivan/covid19-dataset
    Explore at:
    zip(22105840 bytes)Available download formats
    Dataset updated
    Aug 20, 2021
    Authors
    Saravana Kumar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Number of Recovered, Confirmed, Deaths from 2019-2021 Global Data fetched from World Health Organisation and John Hopkins University.

  14. COVID-19 Worldwide Daily Data

    • kaggle.com
    zip
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19
    Explore at:
    zip(469881 bytes)Available download formats
    Dataset updated
    Aug 28, 2020
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  15. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  16. Cancer and Deaths Dataset : 1990~2019 Globally

    • kaggle.com
    zip
    Updated Feb 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Belayet HossainDS (2023). Cancer and Deaths Dataset : 1990~2019 Globally [Dataset]. https://www.kaggle.com/belayethossainds/cancer-and-deaths-dataset-19902019-globally
    Explore at:
    zip(2214619 bytes)Available download formats
    Dataset updated
    Feb 25, 2023
    Authors
    Belayet HossainDS
    Description

    https://max-website20-images.s3.ap-south-1.amazonaws.com/MHC_Digital_Treatments_Available_For_Blood_Cancer_Part_13_925x389pix_150322n_01_dc4d07f20e.jpg" alt="Is Blood Cancer Curable - Types, Diagnosis & Cure | Max Hospital">

    The "Cancer and Deaths Dataset: 1990~2019 Globally" is a comprehensive dataset containing information on cancer incidence and mortality rates across the world from 1990 to 2019.

    The dataset is an excellent resource for researchers, healthcare professionals, and policymakers who are interested in understanding the global burden of cancer and its impact on populations.

    [ Total 9 file , 160 columns, All the countries, 30Years data ]

    >In 2017, 9.6 million people are estimated to have died from the various forms of cancer. Every sixth death in the world is due to cancer, making it the second leading cause of death – second only to cardiovascular diseases.1
    
    Progress against many other causes of deaths and demographic drivers of increasing population size, life expectancy and — particularly in higher-income countries — aging populations mean that the total number of cancer deaths continues to increase. This is a very personal topic to many: nearly everyone knows or has lost someone dear to them from this collection of diseases.
    

    ## Data vastness of this dataset: 01. annual-number-of-deaths-by-cause data. 02. total-cancer-deaths-by-type data. 03. cancer-death-rates-by-age data. 04. share-of-population-with-cancer-types data. 05. share-of-population-with-cancer data. 06. number-of-people-with-cancer-by-age data. 07. share-of-population-with-cancer-by-age data. 08. disease-burden-rates-by-cancer-types data. 09. cancer-deaths-rate-and-age-standardized-rate-index data.

  17. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  18. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  19. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  20. R

    Russia RU: Number of Deaths Ages 20-24 Years

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Russia RU: Number of Deaths Ages 20-24 Years [Dataset]. https://www.ceicdata.com/en/russia/health-statistics/ru-number-of-deaths-ages-2024-years
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Russia
    Description

    Russia RU: Number of Deaths Ages 20-24 Years data was reported at 6,401.000 Person in 2019. This records a decrease from the previous number of 7,070.000 Person for 2018. Russia RU: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 23,663.000 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 31,770.000 Person in 2001 and a record low of 6,401.000 Person in 2019. Russia RU: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Russian Federation – Table RU.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Leading causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/288839/leading-causes-of-death-worldwide/
Organization logo

Leading causes of death worldwide in 2019

Explore at:
59 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 26, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2019
Area covered
Worldwide
Description

In 2019, the leading causes of death globally included ischemic heart disease, stroke and chronic obstructive pulmonary disease (COPD). There were **** million deaths from ischemic heart disease at that time and about **** million deaths caused by stroke. In recent history, increases in life expectancy, increases in population and better standards of living have changed the leading causes of death over time. Non-Communicable Disease Deaths The number of deaths due to non-communicable diseases has remained relatively stable in recent years. A large majority of non-communicable or chronic disease deaths globally are caused by cardiovascular diseases, followed by cancer. Various lifestyle choices cause or exacerbate many of these chronic diseases. Drinking, smoking and lack of exercise can contribute to higher rates of non-communicable diseases and early death. It is estimated that the relative risk of death before the age of 65 was ** times greater among those that smoked and never quit. Infectious Disease Deaths Trends indicate that the number of deaths due to infectious diseases have decreased in recent years. However, infectious diseases still disproportionately impact low- and middle-income countries. In 2021, tuberculosis, malaria and HIV/AIDS were still among the leading causes of death in low-income countries. However, the leading causes of death in upper income countries are almost exclusively non-communicable, chronic conditions.

Search
Clear search
Close search
Google apps
Main menu