100+ datasets found
  1. Countries with the highest birth rate 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest birth rate 2024 [Dataset]. https://www.statista.com/statistics/264704/ranking-of-the-20-countries-with-the-highest-birth-rate/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Niger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.

  2. F

    Crude Birth Rate for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Crude Birth Rate for the United States [Dataset]. https://fred.stlouisfed.org/series/SPDYNCBRTINUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Crude Birth Rate for the United States (SPDYNCBRTINUSA) from 1960 to 2023 about birth, crude, rate, and USA.

  3. Fertility rate of the world and continents 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.statista.com/statistics/1034075/fertility-rate-world-continents-1950-2020/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around 5 children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have 5 or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  4. d

    Birth Statistics

    • catalog.data.gov
    • data.amerigeoss.org
    • +2more
    Updated Nov 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Birth Statistics [Dataset]. https://catalog.data.gov/dataset/birth-statistics-a76a6
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Births rates across Lake County, Illinois by ZIP Code. Explanation of field attributes: LBW - Low birth weight is defined as a birth where the baby weighs less than 2,500 grams. This is a percent. Preterm - Preterm birth is defined as a birth that occur before 37 weeks of pregnancy. This is a percent. Teen Birth – Teen births are defined as women aged 15 to 19 years who give birth. This is a rate. Birth Rate – Birth rate is defined as the number of live births per 1,000 populations. 1st Trimester of Care – 1st Trimester of care refers to the doctor’s visits and care provided during the first 13 weeks of pregnancy. This is a percent.

  5. Crude birth rate, age-specific fertility rates and total fertility rate...

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Crude birth rate, age-specific fertility rates and total fertility rate (live births) [Dataset]. http://doi.org/10.25318/1310041801-eng
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.

  6. Number of births in the United States 1990-2023

    • statista.com
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of births in the United States 1990-2023 [Dataset]. https://www.statista.com/statistics/195908/number-of-births-in-the-united-states-since-1990/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    While the standard image of the nuclear family with two parents and 2.5 children has persisted in the American imagination, the number of births in the U.S. has steadily been decreasing since 1990, with about 3.6 million babies born in 2023. In 1990, this figure was 4.16 million. Birth and replacement rates A country’s birth rate is defined as the number of live births per 1,000 inhabitants, and it is this particularly important number that has been decreasing over the past few decades. The declining birth rate is not solely an American problem, with EU member states showing comparable rates to the U.S. Additionally, each country has what is called a “replacement rate.” The replacement rate is the rate of fertility needed to keep a population stable when compared with the death rate. In the U.S., the fertility rate needed to keep the population stable is around 2.1 children per woman, but this figure was at 1.67 in 2022. Falling birth rates Currently, there is much discussion as to what exactly is causing the birth rate to decrease in the United States. There seem to be several factors in play, including longer life expectancies, financial concerns (such as the economic crisis of 2008), and an increased focus on careers, all of which are causing people to wait longer to start a family. How international governments will handle falling populations remains to be seen, but what is clear is that the declining birth rate is a multifaceted problem without an easy solution.

  7. Crude birth rate in selected regions 1820-2024

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Crude birth rate in selected regions 1820-2024 [Dataset]. https://www.statista.com/statistics/1302774/crude-birth-rate-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe, Africa, LAC, North America, Asia
    Description

    For most of the past two centuries, falling birth rates have been associated with societal progress. During the demographic transition, where pre-industrial societies modernize in terms of fertility and mortality, falling death rates, especially among infants and children, are the first major change. In response, as more children survive into adulthood, women have fewer children as the need to compensate for child mortality declines. This transition has happened at different times across the world and is an ongoing process, with early industrial countries being the first to transition, and Sub-Saharan African countries being the most recent to do so. Additionally, some Asian countries (particularly China through government policy) have gone through their demographic transitions at a much faster pace than those deemed more developed. Today, in countries such as Japan, Italy, and Germany, birth rates have fallen well below death rates; this is no longer considered a positive demographic trend, as it leads to natural population decline, and may create an over-aged population that could place a burden on healthcare systems.

  8. Low Weight Birth Rate (Counties)

    • data-cdphe.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Feb 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado Department of Public Health and Environment (2016). Low Weight Birth Rate (Counties) [Dataset]. https://data-cdphe.opendata.arcgis.com/datasets/low-weight-birth-rate-counties
    Explore at:
    Dataset updated
    Feb 9, 2016
    Dataset authored and provided by
    Colorado Department of Public Health and Environmenthttps://cdphe.colorado.gov/
    Area covered
    Description

    These data contain the Crude Colorado County Low Weight Birth Rate which equals the total number of low weight births (singleton low weight births) divided by the denominator of all singleton births (2015-2019). Low weight births are defined as infants weighing 5 pounds, 8 ounces or less (under 2,500 grams) at birth. These data are from the Colorado Department of Public Health and Environment's Vital Records Birth Dataset and are published annually by the Colorado Department of Public Health and Environment.

  9. Crude birth rate of the United States 1800-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Crude birth rate of the United States 1800-2020 [Dataset]. https://www.statista.com/statistics/1037156/crude-birth-rate-us-1800-2020/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1800 - 2019
    Area covered
    United States
    Description

    In the United States, the crude birth rate in 1800 was 48.3 live births per thousand people, meaning that 4.8 percent of the population had been born in that year. Between 1815 and 1825 the crude birth rate jumped from 46.5 to 54.7 (possibly due to Florida becoming a part of the US, but this is unclear), but from this point until the Second World War the crude birth rate dropped gradually, reaching 19.2 in 1935. Through the 1940s, 50s and 60s the US experienced it's baby boom, and the birth rate reached 24.1 in 1955, before dropping again until 1980. From the 1980s until today the birth rate's decline has slowed, and is expected to reach twelve in 2020, meaning that just over 1 percent of the population will be born in 2020.

  10. Decreasing Fertility Rate Correlates with the Chronological Increase and...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yoshiro Nagao (2023). Decreasing Fertility Rate Correlates with the Chronological Increase and Geographical Variation in Incidence of Kawasaki Disease in Japan [Dataset]. http://doi.org/10.1371/journal.pone.0067934
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yoshiro Nagao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Japan
    Description

    BackgroundKawasaki disease (KD) is a common cause of acquired paediatric heart disease in developed countries. KD was first identified in the 1960s in Japan, and has been steadily increasing since it was first reported. The aetiology of KD has not been defined, but is assumed to be infection-related. The present study sought to identify the factor(s) that mediate the geographical variation and chronological increase of KD in Japan.Methods and FindingsBased upon data reported between 1979 and 2010 from all 47 prefectures in Japan, the incidence and mean patient age at the onset of KD were estimated. Using spatial and time-series analyses, incidence and mean age were regressed against climatic/socioeconomic variables. Both incidence and mean age of KD were inversely correlated with the total fertility rate (TFR; i.e., the number of children that would be born to one woman). The extrapolation of a time-series regressive model suggested that KD emerged in the 1960s because of a dramatic decrease in TFR in the 1940s through the 1950s.ConclusionsMean patient age is an inverse surrogate for the hazard of contracting the aetiologic agent. Therefore, the observed negative correlation between mean patient age and TFR suggests that a higher TFR is associated with KD transmission. This relationship may be because a higher TFR facilitates sibling-to-sibling transmission. Additionally, the observed inverse correlation between incidence and TFR implies a paradoxical “negative” correlation between the incidence and the hazard of contracting the aetiologic agent. It was hypothesized that a decreasing TFR resulted in a reduced hazard of contracting the agent for KD, thereby increasing KD incidence.

  11. Births in England and Wales: summary tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Births in England and Wales: summary tables [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsummarytables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 23, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Live births and stillbirths annual summary statistics, by sex, age of mother, whether within marriage or civil partnership, percentage of non-UK-born mothers, birth rates and births by month and mothers' area of usual residence.

  12. f

    Descriptive statistics of variables.

    • plos.figshare.com
    bin
    Updated Aug 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guangli Yang; Liangchen Zhang (2023). Descriptive statistics of variables. [Dataset]. http://doi.org/10.1371/journal.pone.0289781.t002
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Guangli Yang; Liangchen Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The outbreak of the COVID-19 in early 2020 and the recurring epidemic in later years have disturbed China’s economy. Moreover, China’s demographic dividend has been disappearing due to its fastest aging population and declining birth rate. The birth rates in eastern provinces of China are much lower than those of the western provinces. Considering the impacts of the COVID-19 and aging population, this paper focused on the relationship between birth rate and the disposable income and tried to find effective measures to raise China’s birth rate. We discovered through regression analysis that the link between per capita disposable income and birth rate is initially "reverse J" and later "inverted J", indicating that per capita disposable income will influence the birth rate. Women’s employment rate and educational level are negatively correlated with the birth rate. To raise the fertility rate in China, it is necessary to increase the marriage rate and the willingness to have children by raising the per capita disposable income and introducing effective tax relief policies.

  13. N

    Texas Population Pyramid Dataset: Age Groups, Male and Female Population,...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Texas Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6377fca0-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Texas population pyramid, which represents the Texas population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Texas, is 32.4.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Texas, is 19.0.
    • Total dependency ratio for Texas is 51.4.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Texas is 5.3.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Texas population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Texas for the selected age group is shown in the following column.
    • Population (Female): The female population in the Texas for the selected age group is shown in the following column.
    • Total Population: The total population of the Texas for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Texas Population by Age. You can refer the same here

  14. Birth rate in China 2000-2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Birth rate in China 2000-2024 [Dataset]. https://www.statista.com/statistics/251045/birth-rate-in-china/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2024, the average number of children born per 1,000 people in China ranged at ****. The birth rate has dropped considerably since 2016, and the number of births fell below the number of deaths in 2022 for the first time in decades, leading to a negative population growth rate. Recent development of the birth rate Similar to most East-Asian countries and territories, demographics in China today are characterized by a very low fertility rate. As low fertility in the long-term limits economic growth and leads to heavy strains on the pension and health systems, the Chinese government decided to support childbirth by gradually relaxing strict birth control measures, that had been in place for three decades. However, the effect of this policy change was considerably smaller than expected. The birth rate increased from **** births per 1,000 inhabitants in 2010 to ***** births in 2012 and remained on a higher level for a couple of years, but then dropped again to a new low in 2018. This illustrates that other factors constrain the number of births today. These factors are most probably similar to those experienced in other developed countries as well: women preferring career opportunities over maternity, high costs for bringing up children, and changed social norms, to name only the most important ones. Future demographic prospects Between 2020 and 2023, the birth rate in China dropped to formerly unknown lows, most probably influenced by the coronavirus pandemic. As all COVID-19 restrictions were lifted by the end of 2022, births figures showed a catch-up effect in 2024. However, the scope of the rebound might be limited. A population breakdown by five-year age groups indicates that the drop in the number of births is also related to a shrinking number of people with child-bearing age. The age groups between 15 and 29 years today are considerably smaller than those between 30 and 44, leaving less space for the birth rate to increase. This effect is exacerbated by a considerable gender gap within younger age groups in China, with the number of females being much lower than that of males.

  15. g

    Explaining Low Fertility in Italy (ELFI) - Version 1

    • search.gesis.org
    Updated Feb 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kertzer, David (2021). Explaining Low Fertility in Italy (ELFI) - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR31881.v1
    Explore at:
    Dataset updated
    Feb 16, 2021
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    Kertzer, David
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de449860https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de449860

    Area covered
    Italy
    Description

    Abstract (en): The ethnographic fieldwork portion of the project - interviews with women of reproductive age, and when available their partners and mothers - was initiated and completed in 2006. For each of four Italian cities (Padua, Bologna, Cagliari, and Naples) studied ethnographically by trained anthropologists, both a working-class and a middle-class neighborhood were identified. These interviews (349 in number) have been transcribed without identifiers. All interviews have been coded and assigned 'attributes' (or nominative variables, such as gender, civil/religious status of marriage, etc.) using the qualitative data analysis software (NVIVO), and these reside in secure electronic project folders. This large body of qualitative interview data is now complete and ready for use across the international collaborative units. Preliminary research reveals the particular significance of family ties in Italy, the fundamental role played by gender systems, and the specific cultural, socio-economic, and politic contexts in which fertility behavior and parenting are embedded. Please see the study website for more information. The surprisingly deep drop in Italian birth rates to among the lowest in the world (total fertility rate of 1.3 or below) has dramatically challenged existing social science theory by appearing to contradict population experts' predictions of where such very low "below replacement" fertility would emerge. This interdisciplinary research project, known as "ELFI" (Explaining Low Fertility in Italy), has made considerable inroads into understanding the puzzle of "lowest-low" Italian fertility, reevaluating theories of reproduction and human behavior more generally. Through the use of innovative methodologies, an international team of collaborators from anthropology, sociology, and demography has produced key findings using both statistical, quantitative methods and extensive ethnographic, qualitative methods. Four Italian cities were studied ethnographically by trained anthropologists. In each, both a working-class and a middle-class neighborhood were identified, and participants were selected. Women of reproductive age in four Italian cities (Padua, Bologna, Cagliari, and Naples). Smallest Geographic Unit: city Anthropologists selected 50 women aged 23-45 in each of four Italian cities. Half of these women were of younger reproductive ages (23-32) and half from older ages (33-45). In addition, in each cohort, half of the women were from a working-class neighborhood and half from a middle-class neighborhood, of varying levels of education and parity. Interviews were also conducted (when possible) with the woman's mother and with the woman's husband or cohabiting partner. The interviewees were selected through personal contacts identified through an indirect snowballing procedure with multiple entries (independently selected initial contacts) in order to avoid a clustered sample. The final sample of interviews consists of 233 women (aged 23-45), 49 mothers, and 67 partners, for a total of 349 interviews. The indirect snowball sampling procedure allowed us to stratify the sample by age, parity, and marital status of the woman in order to maximize variation in socio-demographic characteristics. To facilitate analysis, each of the 349 interviews was recorded, transcribed, and examined using the computer program Nvivo8. Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD048715). National Science Foundation (BCS 0418443). face-to-face interviewAccording to the principal investigator, direct identifiers have been removed. But the transcripts are in Italian, so we were not able to determine the potential for indirect identifiers. As such, the data is restricted.

  16. N

    Indiana Population Pyramid Dataset: Age Groups, Male and Female Population,...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Indiana Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/525503e0-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indiana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Indiana population pyramid, which represents the Indiana population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Indiana, is 30.0.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Indiana, is 25.5.
    • Total dependency ratio for Indiana is 55.4.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Indiana is 3.9.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Indiana population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Indiana for the selected age group is shown in the following column.
    • Population (Female): The female population in the Indiana for the selected age group is shown in the following column.
    • Total Population: The total population of the Indiana for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Indiana Population by Age. You can refer the same here

  17. India Vital Statistics: Birth Rate: per 1000 Population: Manipur

    • ceicdata.com
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India Vital Statistics: Birth Rate: per 1000 Population: Manipur [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-birth-rate-by-states/vital-statistics-birth-rate-per-1000-population-manipur
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Birth Rate: per 1000 Population: Manipur data was reported at 13.300 NA in 2020. This records a decrease from the previous number of 13.600 NA for 2019. Vital Statistics: Birth Rate: per 1000 Population: Manipur data is updated yearly, averaging 14.600 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 19.000 NA in 1998 and a record low of 12.900 NA in 2016. Vital Statistics: Birth Rate: per 1000 Population: Manipur data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH002: Vital Statistics: Birth Rate: by States.

  18. Total fertility rate worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total fertility rate worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805064/fertility-rate-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.

  19. Regression results after excluding the variable EL.

    • plos.figshare.com
    bin
    Updated Aug 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guangli Yang; Liangchen Zhang (2023). Regression results after excluding the variable EL. [Dataset]. http://doi.org/10.1371/journal.pone.0289781.t005
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Guangli Yang; Liangchen Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Regression results after excluding the variable EL.

  20. N

    Poplar, MT Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Poplar, MT Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f0445937-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Poplar
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Poplar, MT population pyramid, which represents the Poplar population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Poplar, MT, is 30.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Poplar, MT, is 16.5.
    • Total dependency ratio for Poplar, MT is 47.5.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Poplar, MT is 6.0.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Poplar population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Poplar for the selected age group is shown in the following column.
    • Population (Female): The female population in the Poplar for the selected age group is shown in the following column.
    • Total Population: The total population of the Poplar for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Poplar Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the highest birth rate 2024 [Dataset]. https://www.statista.com/statistics/264704/ranking-of-the-20-countries-with-the-highest-birth-rate/
Organization logo

Countries with the highest birth rate 2024

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Worldwide
Description

Niger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.

Search
Clear search
Close search
Google apps
Main menu