Facebook
TwitterClick Here to view Data Fact Sheet.
Facebook
TwitterThis dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.
Facebook
TwitterAbout the dataset This dataset uses information from the DWP benefit system to provide estimates of children living in poverty for wards in London. In order to be counted in this dataset, a family must have claimed Child Benefit and at least one other household benefit (Universal Credit, tax credits or Housing Benefit) during the year. The numbers are calibrated to the Households Below Average Income (HBAI) dataset used to provide the government's headline poverty statistics. The definition of relative low income is living in a household with equivalised* income before housing costs (BHC) below 60% of contemporary national median income. The income measure includes contributions from earnings, state support and pensions. Further detail on the estimates of dependent children living in relative low income, including alternative geographical breakdowns and additional variables, such as age of children, family type and work status are available from DWP's statistical tabulation tool Stat-Xplore. Minor adjustments to the data have been applied to guard against the identification of individual claimants. This dataset replaced the DWP children in out-of-work benefit households and HMRC children in low income families local measure releases. This dataset includes estimates for all wards in London of numbers of dependent children living in relative low income families for each financial year from 2014/15 to the latest available (2022/23). The figures for the latest year are provisional and are subject to minor revision when the next dataset is released by DWP. Headlines Number of children The number of dependent children living in relative low income across London, rose from below 310,000 in the financial year ending 2015 to over 420,000 in the financial year ending 2020, but has decreased since then to below 350,000, which is well below the number for financial year ending 2018. While many wards in London have followed a similar pattern, the numbers of children in low income families in some wards have fallen more sharply, while the numbers in other wards have continued to grow. Proportion of children in each London ward Ward population sizes vary across London, the age profile of that population also varies and both the size and make-up of the population can change over time, so in order to make more meaningful comparisons between wards or over time, DWP have also published rates, though see note below regarding caution when using these figures. A dependent child is anyone aged under 16; or aged 16 to 19 in full-time non-advanced education or in unwaged government training. Ward level estimates for the total number of dependent children are not available, so percentages cannot be derived. Ward level estimates for the percentage of children under 16 living in low income families are usually published by DWP but, in its latest release, ward-level population estimates were not available at the time, so no rates were published. To derive the rates in this dataset, the GLA has used the ONS's latest ward-level population estimates (official statistics in development). Percentages for 2021/22 are calculated using the 2021 mid year estimates, while percentages for 2022/23 are calculated using the 2022 mid year estimates. As these are official statistics in development, rates therefore need to be treated with some caution. Notes *equivalised income is adjusted for household size and composition in order to compare living standards between households of different types.
Facebook
TwitterThe Low-Income Energy Affordability Data (LEAD) Tool was created by the Better Building's Clean Energy for Low Income Communities Accelerator (CELICA) to help state and local partners understand housing and energy characteristics for the low- and moderate-income (LMI) communities they serve. The LEAD Tool provides estimated LMI household energy data based on income, energy expenditures, fuel type, housing type, and geography, which stakeholders can use to make data-driven decisions when planning for their energy goals. From the LEAD Tool website, users can also create and download customized heat-maps and charts for various geographies, housing, energy characteristics, and population demographics and educational attainment. Datasets are available for 50 states plus Puerto Rico and Washington D.C., along with their cities, counties, and census tracts, as well as tribal areas. The file below, "01. Description of Files," provides a list of all files included in this dataset. A description of the abbreviations and units used in the LEAD Tool data can be found in the file below titled "02. Data Dictionary 2022". A list of geographic regions used in the LEAD Tool can be found in files 04-11. The Low-Income Energy Affordability Data comes primarily from the 2022 U.S. Census American Community Survey 5-Year Public Use Microdata Samples and is calibrated to 2022 U.S. Energy Information Administration electric utility (Survey Form-861) and natural gas utility (Survey Form-176) data. The methodology for the LEAD Tool can viewed below (3. Methodology Document). For more information, and to access the interactive LEAD Tool platform, please visit the "10. LEAD Tool Platform" resource link below. For more information on the Better Building's Clean Energy for Low Income Communities Accelerator (CELICA), please visit the "11. CELICA Website" resource below.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The StatXplore Children in low-income families' local area statistics (CiLIF) provides information on the number of children living in Relative low income by local area across the United Kingdom.The summary Statistical Release and tables which also show the proportions of children living in low income families are available here: Children in low income families: local area statistics - GOV.UK (www.gov.uk)Statistics on the number of children (by age) in low income families by financial year are published on Stat-Xplore. Figures are calibrated to the Households Below Average Income (HBAI) survey regional estimates of children in low income but provide more granular local area information not available from the HBAI, for example by Local Authority, Westminster Parliamentary Constituency and Ward.
Relative low-income is defined as a family in low income Before Housing Costs (BHC) in the reference year. A family must have claimed Child Benefit and at least one other household benefit (Universal Credit, tax credits, or Housing Benefit) at any point in the year to be classed as low income in these statistics. Gross income measure is Before Housing Costs (BHC) and includes contributions from earnings, state support and pensions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Sierra Nevada region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people ' one working adult parent and three dependent children ' has a different poverty threshold than a household comprised of four unrelated independent adults.
Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Facebook
TwitterVITAL SIGNS INDICATOR Poverty (EQ5)
FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED December 2018
DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)
U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov
METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html
For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Facebook
TwitterSevere housing burden is defined as spending 50% or more of monthly household income on housing. A small number of households without housing cost or income data were excluded from analyses.Given the high cost of housing in Los Angeles County, many residents spend a sizable portion of their incomes on housing every month. Severe housing burden disproportionately affects low-income individuals, renters, and communities of color. Severe housing burden can negatively impact health by forcing individuals and families into low quality or unsafe housing, by causing significant stress, and by limiting the amount of money people have available to spend on other life necessities, such as food or healthcare. It is also an important risk factor for homelessness.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterUrban Displacement Project’s (UDP) Estimated Displacement Risk (EDR) model for California identifies varying levels of displacement risk for low-income renter households in all census tracts in the state from 2015 to 2019(1). The model uses machine learning to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP defines displacement risk as a census tract with characteristics which, according to the model, are strongly correlated with more low-income population loss than gain. In other words, the model estimates that more low-income households are leaving these neighborhoods than moving in.This map is a conservative estimate of low-income loss and should be considered a tool to help identify housing vulnerability. Displacement may occur because of either investment, disinvestment, or disaster-driven forces. Because this risk assessment does not identify the causes of displacement, UDP does not recommend that the tool be used to assess vulnerability to investment such as new housing construction or infrastructure improvements. HCD recommends combining this map with on-the-ground accounts of displacement, as well as other related data such as overcrowding, cost burden, and income diversity to achieve a full understanding of displacement risk.If you see a tract or area that does not seem right, please fill out this form to help UDP ground-truth the method and improve their model.How should I read the displacement map layers?The AFFH Data Viewer includes three separate displacement layers that were generated by the EDR model. The “50-80% AMI” layer shows the level of displacement risk for low-income (LI) households specifically. Since UDP has reason to believe that the data may not accurately capture extremely low-income (ELI) households due to the difficulty in counting this population, UDP combined ELI and very low-income (VLI) household predictions into one group—the “0-50% AMI” layer—by opting for the more “extreme” displacement scenario (e.g., if a tract was categorized as “Elevated” for VLI households but “Extreme” for ELI households, UDP assigned the tract to the “Extreme” category for the 0-50% layer). For these two layers, tracts are assigned to one of the following categories, with darker red colors representing higher displacement risk and lighter orange colors representing less risk:• Low Data Quality: the tract has less than 500 total households and/or the census margins of error were greater than 15% of the estimate (shaded gray).• Lower Displacement Risk: the model estimates that the loss of low-income households is less than the gain in low-income households. However, some of these areas may have small pockets of displacement within their boundaries. • At Risk of Displacement: the model estimates there is potential displacement or risk of displacement of the given population in these tracts.• Elevated Displacement: the model estimates there is a small amount of displacement (e.g., 10%) of the given population.• High Displacement: the model estimates there is a relatively high amount of displacement (e.g., 20%) of the given population.• Extreme Displacement: the model estimates there is an extreme level of displacement (e.g., greater than 20%) of the given population. The “Overall Displacement” layer shows the number of income groups experiencing any displacement risk. For example, in the dark red tracts (“2 income groups”), the model estimates displacement (Elevated, High, or Extreme) for both of the two income groups. In the light orange tracts categorized as “At Risk of Displacement”, one or all three income groups had to have been categorized as “At Risk of Displacement”. Light yellow tracts in the “Overall Displacement” layer are not experiencing UDP’s definition of displacement according to the model. Some of these yellow tracts may be majority low-income experiencing small to significant growth in this population while in other cases they may be high-income and exclusive (and therefore have few low-income residents to begin with). One major limitation to the model is that the migration data UDP uses likely does not capture some vulnerable populations, such as undocumented households. This means that some yellow tracts may be experiencing high rates of displacement among these types of households. MethodologyThe EDR is a first-of-its-kind model that uses machine learning and household level data to predict displacement. To create the EDR, UDP first joined household-level data from Data Axle (formerly Infogroup) with tract-level data from the 2014 and 2019 5-year American Community Survey; Affirmatively Furthering Fair Housing (AFFH) data from various sources compiled by California Housing and Community Development; Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data; and the Environmental Protection Agency’s Smart Location Database.UDP then used a machine learning model to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP modeled displacement risk as the net migration rate of three separate renter households income categories: extremely low-income (ELI), very low-income (VLI), and low-income (LI). These households have incomes between 0-30% of the Area Median Income (AMI), 30-50% AMI, and 50-80% AMI, respectively. Tracts that have a predicted net loss within these groups are considered to experience displacement in three degrees: elevated, high, and extreme. UDP also includes a “At Risk of Displacement” category in tracts that might be experiencing displacement.What are the main limitations of this map?1. Because the map uses 2019 data, it does not reflect more recent trends. The pandemic, which started in 2020, has exacerbated income inequality and increased housing costs, meaning that UDP’s map likely underestimates current displacement risk throughout the state.2. The model examines displacement risk for renters only, and does not account for the fact that many homeowners are also facing housing and gentrification pressures. As a result, the map generally only highlights areas with relatively high renter populations, and neighborhoods with higher homeownership rates that are known to be experiencing gentrification and displacement are not as prominent as one might expect.3. The model does not incorporate data on new housing construction or infrastructure projects. The map therefore does not capture the potential impacts of these developments on displacement risk; it only accounts for other characteristics such as demographics and some features of the built environment. Two of UDP’s other studies—on new housing construction and green infrastructure—explore the relationships between these factors and displacement.Variable ImportanceFigures 1, 2, and 3 show the most important variables for each of the three models—ELI, VLI, and LI. The horizontal bars show the importance of each variable in predicting displacement for the respective group. All three models share a similar order of variable importance with median rent, percent non-white, rent gap (i.e., rental market pressure calculated using the difference between nearby and local rents), percent renters, percent high-income households, and percent of low-income households driving much of the displacement estimation. Other important variables include building types as well as economic and socio-demographic characteristics. For a full list of the variables included in the final models, ranked by descending order of importance, and their definitions see all three tabs of this spreadsheet. “Importance” is defined in two ways: 1. % Inclusion: The average proportion of times this variable was included in the model’s decision tree as the most important or driving factor.2. MeanRank: The average rank of importance for each variable across the numerous model runs where higher numbers mean higher ranking. Figures 1 through 3 below show each of the model variable rankings ordered by importance. The red lines represent Jenks Breaks, which are designed to sort values into their most “natural” clusters. Variable importance for each model shows a substantial drop-off after about 10 variables, meaning a relatively small number of variables account for a large amount of the predictive power in UDP’s displacement model.Figure 1. Variable Importance for Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Figure 2. Variable Importance for Very Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet. Figure 3. Variable Importance for Extremely Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Source: Chapple, K., & Thomas, T., and Zuk, M. (2022). Urban Displacement Project website. Berkeley, CA: Urban Displacement Project.(1) UDP used this time-frame because (a) the 2020 census had a large non-response rate and it implemented a new statistical modification that obscures and misrepresents racial and economic characteristics at the census tract level and (b) pandemic mobility trends are still in flux and UDP believes 2019 is more representative of “normal” or non-pandemic displacement trends.
Facebook
TwitterThis dataset provides data on Qualified Census Tracts for the Low-Income Housing Tax Credit Program for 2024. LIHTC Qualified Census Tracts, as defined under the section 42(d)(5)(C) of the of the Internal Revenue Code of 1986, include any census tract (or equivalent geographic area defined by the Bureau of the Census) in which at least 50 percent of households have an income less than 60 percent of the Area Median Gross Income (AMGI), or which has a poverty rate of at least 25 percent. Maps of Qualified Census Tracts and Difficult Development Areas are available at: huduser.gov/sadda/sadda_qct.html .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Southern California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people ' one working adult parent and three dependent children ' has a different poverty threshold than a household comprised of four unrelated independent adults.
Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Facebook
TwitterHousing burden is defined as spending 30% or more of monthly household income on housing. A small number of households without housing cost or income data were excluded from analyses.Given the high cost of housing in Los Angeles County, many residents spend a sizable portion of their incomes on housing every month and are therefore susceptible to significant housing burden. Housing burden disproportionately affects low-income individuals, renters, and communities of color. Housing burden can negatively impact health by forcing individuals and families into low quality or unsafe housing, by causing significant stress, and by limiting the amount of money people have available to spend on other life necessities, such as food or healthcare. It is also an important risk factor for homelessness.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterA Qualified Census Tract (QCT) is any census tract (or equivalent geographic area defined by the Census Bureau) in which at least 50% of households have an income less than 60% of the Area Median Gross Income (AMGI). HUD has defined 60% of AMGI as 120% of HUD's Very Low Income Limits (VLILs), which are based on 50% of area median family income, adjusted for high cost and low income areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Facebook
TwitterLow-income cut-offs, after tax (LICO-AT) - The Low-income cut-offs, after tax refers to an income threshold, defined using 1992 expenditure data, below which economic families or persons not in economic families would likely have devoted a larger share of their after-tax income than average to the necessities of food, shelter and clothing. More specifically, the thresholds represented income levels at which these families or persons were expected to spend 20 percentage points or more of their after-tax income than average on food, shelter and clothing. These thresholds have been adjusted to current dollars using the all-items Consumer Price Index (CPI).The LICO-AT has 35 cut-offs varying by seven family sizes and five different sizes of area of residence to account for economies of scale and potential differences in cost of living in communities of different sizes. These thresholds are presented in Table 4.3 Low-income cut-offs, after tax (LICO-AT - 1992 base) for economic families and persons not in economic families, 2015, Dictionary, Census of Population, 2016.When the after-tax income of an economic family member or a person not in an economic family falls below the threshold applicable to the person, the person is considered to be in low income according to LICO-AT. Since the LICO-AT threshold and family income are unique within each economic family, low-income status based on LICO-AT can also be reported for economic families.Return to footnote1referrerFootnote 2Low-income status - The income situation of the statistical unit in relation to a specific low-income line in a reference year. Statistical units with income that is below the low-income line are considered to be in low income.For the 2016 Census, the reference period is the calendar year 2015 for all income variables.Return to footnote2referrerFootnote 3The low-income concepts are not applied in the territories and in certain areas based on census subdivision type (such as Indian reserves). The existence of substantial in-kind transfers (such as subsidized housing and First Nations band housing) and sizeable barter economies or consumption from own production (such as product from hunting, farming or fishing) could make the interpretation of low-income statistics more difficult in these situations.Return to footnote3referrerFootnote 4Prevalence of low income - The proportion or percentage of units whose income falls below a specified low-income line.
Facebook
TwitterLow income cut-offs (LICOs) before and after tax by community size and family size, in current dollars, annual.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A Home for Everyone is the City of Boise’s (city) initiative to address needs in the community by supporting the development and preservation of housing affordable to residents on Boise budgets. A Home for Everyone has three core goals: produce new homes affordable at 60% of area median income, create permanent supportive housing for households experiencing homelessness, and preserve home affordable at 80% of area median income. This dataset includes information about all homes that count toward the city’s Home for Everyone goals.
While the “produce affordable housing” and “create permanent supportive housing” goals are focused on supporting the development of new housing, the preservation goal is focused on maintaining existing housing affordable. As a result, many of the data fields related to new development are not relevant to preservation projects. For example, zoning incentives are only applicable to new construction projects.
Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.
The dataset includes details on the number of “homes”. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.
The dataset includes details about the phase of each project when a project involves constructing new housing. The process for building a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.
To contribute to a city goal, homes must meet affordability requirements based on a standard called area median income. The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly housing cost of $1,516. Deeply affordable housing sets the income limit at 60% of area median income, or even 30% of area median income. See Boise Income Guidelines for more details.Project Name – The name of each project. If a row is related to the Home Improvement Loan program, that row aggregates data for all homes that received a loan in that quarter or year. Primary Address – The primary address for the development. Some developments encompass multiple addresses.Project Address(es) – Includes all addresses that are included as part of the development project.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness. Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.
Facebook
TwitterThe U.S. Department of Housing and Urban Development (HUD) requires local municipalities that receive Community Development Block Grant (CDBG or CD) formula Entitlement funds to use the 5-year 2016-2020 American Community Survey (ACS) Low and Moderate Income Summary Data (LMISD) data file to determine where CDBG funds may be used for activities that are available to all the residents in a particular area ("CD area benefit" or "CD-eligible area"). A CD-eligible census tract refers to 2020 census tracts where the area is primarily residential in nature and at least 51.00% of the residents are low- and moderate-income persons as per the LMISD data file. For New York City, a primarily residential area is defined as one where at least 50.00% of the total built floor area is residential. Low- and moderate-income persons are defined as persons living in households with incomes below 80 percent of the area median household income (AMI). In addition, floor area percentages have been updated with the most recent floor area data (PLUTO 24v4). Persons who are interested in determining their individual household eligibility for CD-funded programs should refer to HUD's household low- and moderate-income limits for the given year. For more information about how geographic datasets are used for compliance purposes, please refer to the following HUD Office of Community Planning and Development (CPD) Notice CPD-24-04.
Facebook
TwitterVITAL SIGNS INDICATOR Poverty (EQ5)
FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED December 2018
DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)
U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov
METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html
For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Facebook
TwitterClick Here to view Data Fact Sheet.