100+ datasets found
  1. i

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://datacatalog.ihsn.org/catalog/5178
    Explore at:
    Dataset updated
    Sep 22, 2025
    Dataset provided by
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Ministry of Social Affairs
    Time period covered
    2003
    Area covered
    Serbia, Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  2. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    • +1more
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  3. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  4. e

    Respondent-Driven Sampling and Total Population Data from a Rural Ugandan...

    • b2find.eudat.eu
    Updated Nov 9, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Respondent-Driven Sampling and Total Population Data from a Rural Ugandan Cohort, 2010: Special Licence Access - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/a5bd5cb6-6712-5850-97b4-7f0c7b7b9281
    Explore at:
    Dataset updated
    Nov 9, 2011
    Area covered
    Uganda
    Description

    Abstract copyright UK Data Service and data collection copyright owner. This is a mixed-methods data collection. This study used Respondent Driven Sampling (RDS) methodology, which is a sampling method designed to generate unbiased estimates of population characteristics for populations where a sampling frame is not available. It is a form of snowball or link-tracing sampling, where respondents are given coupons to recruit other members of the target population, and where respondents are rewarded for both participating and for recruiting others. In addition to variables of interest, data are collected on the number of members of the target population each participant knows. Estimation methods are then applied to account for the non-random sample selection in an attempt to generate unbiased estimates for the target population. In 2010, the researchers conducted an RDS study in a rural Ugandan population where total population data were available. The aim of this study was to evaluate whether RDS could generate representative data on a rural Ugandan population by comparing estimates from an RDS survey with total-population data. The data used to define the target population (male household heads) were available from an ongoing general population cohort of 25 villages in rural Masaka, Uganda covering an area of approximately 38km. Annually, households in the study villages are mapped and after obtaining consent, a total-population household census and an individual questionnaire are administered and blood taken for HIV-1 testing. A random sample of eligible men in the target population who were not recruited during the RDS study were also interviewed, using the same RDS questionnaire. Finally, 49 qualitative interviews (of which summaries have been deposited) were conducted with a range of people (men and women) including RDS participants and non-participants, and RDS interviewers. These data can be used to evaluate the RDS sampling method, and to test new RDS estimators. Further information may be found in the documentation and in the journal articles listed in the Publications section. Special Licence access and geographic data This data collection is subject to Special Licence access conditions (see Access section for details). Data are analysable at individual village level, and GPS point data are available for the villages and interview sites. Finer detail geographic variables may be available for certain research questions. If these are required, users should request this when making their Special Licence application. Main Topics: Quantitative data: demographic characteristics of the individual, including household composition, age, HIV status, tribe, religion, relationship between target population sample member and contacts, geographic data. Qualitative interview summaries: respondents' opinions of the study, the conduct of the research and the incentives used. Respondent Driven Sampling methods were used - see Abstract and documentation for details.

  5. e

    Becoming a Minority Project International Survey - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Becoming a Minority Project International Survey - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/3d2b8b16-b4ff-581a-a231-0e3b67fa0a19
    Explore at:
    Dataset updated
    Mar 12, 2024
    Description

    The city of Amsterdam is divided up into 7 city districts, 22 city areas, 99 neighbourhoods and 481 smaller units. The neighbourhood level (which the municipality calls ‘wijken’) was used in the sampling process. Out of the 99 neighbourhoods, 12 have less than 2.000 inhabitants and were therefore excluded from the sampling. Out of the remaining 87 neighbourhoods, 42 are majority minority neighbourhoods (MMN), which were all included in the sampling. The municipal register (Basisregistratie Personen, BRP) was used to conduct the sampling. This was done by the research department of Amsterdam (OIS) on the basis of the composition of the population as of March/ April 2019. In total a sample of 2.000 inhabitants was selected with an equal number of persons per majority minority neighbourhood. It is important to note that only one person per independent domicile could be selected. To ensure that only individuals, who fit the BaM project definition of ‘no migration background’ participate in the study, at the beginning of the survey in all cities all respondents were screened by asking about their birthplace and the birthplace of their parents. Those who did not fit the study’s target group were excluded from the remainder of the questionnaire. 1.2. Rotterdam Rotterdam, the other Dutch city in the BaM survey, is divided into 15 areas and 86 neighbourhoods. Here too the neighbourhood level was used in the sampling process. Out of the 86 neighbourhoods, 23 have less than 2.000 inhabitants and were therefore excluded from the sampling. Out of the remaining 63 neighbourhoods, 35 are sampled in the BAM survey as MMN. The municipal register (Basisregistratie Personen, BRP) was used to conduct the sampling. This was done by the research department of Rotterdam (OBI) on the basis of the composition of the population as of March/ April 2019. In total a sample of 2.000 inhabitants was selected with an equal number of persons per neighbourhood. Again, one person per independent domicile could be selected. 1.3. Antwerp Antwerp is divided into 9 districts, 70 neighbourhoods and 298 smaller units. The neighbourhood level was used in the sampling process. Out of the 70 neighbourhoods, 14 have less than 2.000 inhabitants and were therefore excluded from the sampling. Out of the remaining 56 neighbourhoods, 27 are sampled as MMN. The city of Antwerp does not provide data on the country of birth. The city however does provide figures on the nationality of the person, or on their first nationality and the nationality or the parents. This is done as in the following order: 1. First nationality of the father; 2. First nationality of the mother; 3. First nationality of the person; 4. Current nationality of the person. If all four nationalities are Belgian, the person is labelled as having no migration background (in Flemish ‘autochtoon’). As this definition might lead to an underestimation of the population with migration background3, we considered neighbourhoods where more than 45% (rather than 50%) of the population is defined as ‘allochtoon’ as MMN in Antwerp and also included them in the sampling. Data from the Belgian postal company Bpost was used to conduct the sampling. This was done by the fieldwork bureau DESAN. In total a sample of 3.000 inhabitants was selected. DESAN acquired lists of names, addresses and age of people living in the selected neighbourhoods from the Belgian postal company Bpost. It then applied onomastic sampling (i.e. they selected Belgian sounding names) to the file obtained to isolate persons without migration background. DESAN has extensive experience with this and estimates that onomastic method applied is valid for 90% of the records. The selected respondents were first screened if they belonged to our target group. 1.4. Malmö Malmö is divided into 5 city areas, 10 city parts, and 135 subareas (neighbourhoods). The subarea (neighbourhood) level was used in the sampling process since it was more comparable to the area levels in the other cities. Out of the 135 neighbourhoods, 73 had less than 2000 inhabitants and were therefore excluded from the sampling. Out of the remaining 62 neighbourhoods, 33 are MMN and are sampled. It is important to note that the Swedish definition of migration background deviates from the BaM one, i.e. in Sweden a person has a migration background if they were born abroad or had two parents that were born abroad (compared to the definition used in the BaM project, in which a person is considered to have a migration background if they were born abroad or at least one of their parents were born abroad). We based the neighbourhood selection on the Swedish definition, as that was the available data. As this definition might lead to an underestimation of the population with migration background, we also considered neighbourhoods where more than 40% (rather than 50%) of the population is defined as having a migration background as MMN in Malmö. Data collection provider Norstat used data provided by Itesco to conduct the sampling. In total a sample of 8500 inhabitants was selected in two sampling rounds. The sample file contained the following information: name, address, age and neighbourhood. Initially Norstat purchased a sample from a database provided by Itesco that covers addresses and phone numbers of about 80% of the Swedish population. Using this database, Norstat first conducted onomastic sampling (i.e. they selected Swedish sounding names) and then selected individuals between 25 and 45 years of age. The first sampling round only considered individuals living in neighbourhoods that in 2017 (i) had more than 2000 inhabitants, and (ii) had more than 50% of inhabitants with a migration background (according to the official Swedish definition). This step resulted in the selection of 5000 names in 24 neighbourhoods. Given that Sweden uses a less strict definition of migration background than we do in the BaM project (see neighborhood selection) which might result in an underestimation of the population with a migration background, we also initiated a second sampling round in September 2019. We did this in neighborhoods in which 40-49% of the inhabitants had a migration background according to the official Swedish definition (an additional 9 neighborhoods). The same sampling procedure as during the first round was used, and approximately 3500 people were selected. To ensure that only individuals, who fit the BaM project definition of ‘no migration background’ participate in the study, Norstat screened the respondents at the beginning of the survey by asking about their birthplace and the birthplace of their parents. Those who did not fit the study’s target group were excluded from the remainder of the questionnaire. This strategy is in fact applied to all the fieldworks we have conducted in other cities.

  6. d

    City of Tempe 2022 Community Survey Data

    • catalog.data.gov
    • performance.tempe.gov
    • +12more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2022 Community Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  7. e

    Census of population and housing - one percent sample (2011) - Dataset -...

    • b2find.eudat.eu
    Updated Apr 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census of population and housing - one percent sample (2011) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/4ccf9687-c699-59d0-a94c-4636393857de
    Explore at:
    Dataset updated
    Apr 30, 2023
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    The Census of Population and Housing is one of the most important surveys carried out by ISTAT. It is conducted every ten years from 1861, and the main objectives are: the count of the whole population and the recognition of its structural characteristics; updating and revision of civil registers; the definition of the legal population for juridical and electoral purposes; the collection of information about the number and structural characteristics of houses and buildings. The Census collects information about demographic and family structure of the population, the types of their households, their level of education, their employment status, and other informations on residents population. In 2011, for the first time, some information of socio-economic character were measured on a sample basis through the use of two types of questionnaire: one in a reduced form, with a few questions, including indispensable information for the production of the data required by the European Union with an high spatial detail, and one in complete form. In particular, Istat provides a 1% sample data (594,247 cases) released in two separate datasets: the first file (individui) refers to persons usually resident in private households and in Institutional households and the second one (alloggi) refers to living quarters. In urban areas with at least 20,000 inhabitants a sample was selected by a simple random sampling without replacement procedure of one third of the families. A complete version (long form) of the questionnaire has been sent to the sample, while a short version the questionnaire has been sent to all other inhabitants. web-based self-administered questionnaire (CAWI)

  8. V

    Virginia Population by Sex by Age by Census Block Group (ACS 5-Year)

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Population by Sex by Age by Census Block Group (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-population-by-sex-by-age-by-census-block-group-acs-5-year
    Explore at:
    csv(23831484)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Description

    2013-2023 Virginia Population by Sex by Age by Census Block Group. Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B01001 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  9. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Time period covered
    1999 - 2000
    Area covered
    Zimbabwe, Lesotho, Namibia, South Africa, Botswana, Zambia, Africa, Malawi
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  10. 2024 American Community Survey: B01001 | Sex by Age (ACS 1-Year Estimates...

    • data.census.gov
    Updated Sep 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B01001 | Sex by Age (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/all/tables?q=B01001&g=050XX00US06059
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Sex by Age.Table ID.ACSDT1Y2024.B01001.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and ...

  11. e

    Population 24/7 Near Real Time: Data Library, Sample Outputs and Batch Files...

    • b2find.eudat.eu
    Updated Apr 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Population 24/7 Near Real Time: Data Library, Sample Outputs and Batch Files for England, 2011 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/03b17c24-1611-558a-a6a8-7c7878f40139
    Explore at:
    Dataset updated
    Apr 29, 2023
    Area covered
    England
    Description

    This data collection comprises a data library, sample outputs, batch files and accompanying documentation from the ESRC-funded project “Population247NRT: Near real-time spatiotemporal population estimates for health, emergency response and national security”. The data comprise a structured set of input data for use with the authors’ SurfaceBuilder247 software and sample outputs which estimate the population distribution of England at specific times on specific dates, referenced to 2011 census population totals. The sample output files (provided as GeoTIFFs) contain population estimates in 200m grid cells, based on the British National Grid, for 02:00 (2am) and 14:00 (2pm) on a typical weekday in University and school term-time and out of term-time. The estimates are broken down by seven age/economic activity sub-groups for term-time and six for out of term-time, and include estimates of population activity in residential, workplace, education, healthcare and road transportation domains. The data library, which has been constructed entirely using open data sources, comprises population estimates, by age/economic activity sub-groups, for point locations (typically population-weighted centroids of census output areas and workplace zones, or postcode centroids of sites such as schools or hospitals); time profiles representing usual patterns of population activity at these sites during a 24-hour period; and background grid layers representing the land surface area and major road network. SurfaceBuilder247 uses the data library to generate time-specific gridded population estimates by redistributing the population of each sub-group across the available locations and background grid in accordance with the reference time profiles. The sample output grids provided in this resource may be used directly in GIS software or, alternatively, the input data library may be reprocessed using SurfaceBuilder247 to generate estimates for specific dates and times of interest to the user. Sample batch and session parameter files are included in the resource.Decision-making and policy formulation in sectors such as health, emergency/crisis response and national security, ideally require accurate dynamic information on the number of people in specific places at specific times of the day, week, season or year. Traditional census data do not provide this level of detail but are often used for such policy and planning purposes. The ESRC-funded Population247 programme of research (Martin et al, 2015) developed a framework, methodology and software tool (SurfaceBuilder247) for integrating diverse contemporary data sources to produce enhanced time-specific population estimates for small geographical areas. Its usefulness has since been demonstrated for flooding and radiation emergency response/planning, through collaborations with HR Wallingford and Public Health England. These models have primarily involved the integration of open administrative data for activities such as place of residence, work, education and health. Now, new and emerging forms of data, such as sensor data, live and static data feeds provided via the internet, and various commercial datasets which were not previously available, provide exciting opportunities to enhance these population estimates. Such new and emerging datasets are useful because they provide near real-time information on population activity in sectors which are particularly dynamic and have previously been difficult to model, such as retail, leisure and transport. However, extracting useful intelligence from these sources, and integrating and calibrating them with existing data sources, poses significant challenges for researchers and practitioners seeking to employ them in the creation of time-specific population estimates. This project will combine new, emerging and existing datasets in order to produce enhanced time-specific population estimates for more informed decision-making and policy formulation in the health, emergency/crisis response and national security sectors. It is a collaborative project between University of Southampton, Public Health England (PHE), Health and Safety Executive (HSE) and Defence Science and Technology Laboratory (Dstl). The project will enhance existing methods and tools for harvesting, processing, integrating and calibrating new, emerging and existing data sources in order to produce time-specific population estimates. It will deliver two substantive policy demonstrator case studies with the project partners. The first case study will demonstrate the potential for using time-specific population estimates for near real-time response in emergencies; the second will explore their usefulness for modelling variation in 'normal' population distributions through space and time in order to inform longer-term planning and policy formulation. Importantly, the project will also encourage the sharing of knowledge and expertise between academia and the public sector through joint design and implementation of the case studies, internal seminars and a jointly organised stakeholder workshop. Invitees to the workshop will be key stakeholders in policy and practice from within and beyond the partners' sectors. The workshop will showcase the data, methods and tools developed by the project, discuss the opportunities and challenges involved in implementing these for decision-making and policy formulation, and identify how such methods might realistically be scaled up within these sectors. Ultimately, the aim of the project is to help partners such as PHE, HSE and Dstl carry out their remits more effectively and efficiently through the provision of better time-specific population estimates. The data library and sample output files provided in this data collection have been generated by processing a range of open data sources including residential and workplace populations from the 2011 Census, school and college pupil numbers from the school census and services such as the government’s ‘Get Information About Schools’, university student numbers from the Higher Education Statistics Agency, hospital patient numbers and attendance time profiles from NHS Digital, road traffic estimates from the Department for Transport National Transportation Model, and GIS road network, inland water and coastline layers from Ordnance Survey and the Office for National Statistics. Information from the 2015 Time Use Survey has been used in the estimation of typical time profiles for workplace activities. GIS processing has been undertaken to estimate typical catchment area sizes for locations such as schools and hospitals. The principal input data are population counts for 2011 census output areas in England, which determine the base populations of all the estimates produced. The project team have georeferenced, reformatted and integrated all the input sources to create an input data library for the SurfaceBuilder247 software. All the necessary input files are provided, together with sample outputs for selected times of interest.

  12. Pew Survey on Israel's Religiously Divided Society Data Set

    • thearda.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pew Forum on Religion and Public Life, Pew Survey on Israel's Religiously Divided Society Data Set [Dataset]. http://doi.org/10.17605/OSF.IO/GSQVJ
    Explore at:
    Dataset provided by
    Association of Religion Data Archives
    Authors
    Pew Forum on Religion and Public Life
    Dataset funded by
    The Pew Charitable Trusts
    The Neubauer Family Foundation
    Pew Research Centerhttp://pewresearch.org/
    Description

    Between Oct. 14, 2014, and May 21, 2015, Pew Research Center, with generous funding from The Pew Charitable Trusts and the Neubauer Family Foundation, completed 5,601 face-to-face interviews with non-institutionalized adults ages 18 and older living in Israel.

    The survey sampling plan was based on six districts defined in the 2008 Israeli census. In addition, Jewish residents of West Bank (Judea and Samaria) were included.

    The sample includes interviews with 3,789 respondents defined as Jews, 871 Muslims, 468 Christians and 439 Druze. An additional 34 respondents belong to other religions or are religiously unaffiliated. Five groups were oversampled as part of the survey design: Jews living in the West Bank, Haredim, Christian Arabs, Arabs living in East Jerusalem and Druze.

    Interviews were conducted under the direction of Public Opinion and Marketing Research of Israel (PORI). Surveys were administered through face-to-face, paper and pencil interviews conducted at the respondent's place of residence. Sampling was conducted through a multi-stage stratified area probability sampling design based on national population data available through the Israel's Central Bureau of Statistics' 2008 census.

    The questionnaire was designed by Pew Research Center staff in consultation with subject matter experts and advisers to the project. The questionnaire was translated into Hebrew, Russian and Arabic, independently verified by professional linguists conversant in regional dialects and pretested prior to fieldwork.

    The questionnaire was divided into four sections. All respondents who took the survey in Russian or Hebrew were branched into the Jewish questionnaire (Questionnaire A). Arabic-speaking respondents were branched into the Muslim (Questionnaire B), Christian (Questionnaire C) or Druze questionnaire (D) based on their response to the religious identification question. For the full question wording and exact order of questions, please see the questionnaire.

    Note that not all respondents who took the questionnaire in Hebrew or Russian are classified as Jews in this study. For further details on how respondents were classified as Jews, Muslims, Christians and Druze in the study, please see sidebar in the report titled "http://www.pewforum.org/2016/03/08/israels-religiously-divided-society/" Target="_blank">"How Religious are Defined".

    Following fieldwork, survey performance was assessed by comparing the results for key demographic variables with population statistics available through the census. Data were weighted to account for different probabilities of selection among respondents. Where appropriate, data also were weighted through an iterative procedure to more closely align the samples with official population figures for gender, age and education. The reported margins of sampling error and the statistical tests of significance used in the analysis take into account the design effects due to weighting and sample design.

    In addition to sampling error and other practical difficulties, one should bear in mind that question wording also can have an impact on the findings of opinion polls.

  13. 2024 American Community Survey: B98003 | Unweighted Total Population Sample...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B98003 | Unweighted Total Population Sample (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B98003?q=B98003
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Unweighted Total Population Sample.Table ID.ACSDT1Y2024.B98003.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimat...

  14. 2024 American Community Survey: S1810 | Disability Characteristics (ACS...

    • data.census.gov
    Updated Oct 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2024 American Community Survey: S1810 | Disability Characteristics (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/cedsci/table?q=Texas%20disability
    Explore at:
    Dataset updated
    Oct 30, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Disability Characteristics.Table ID.ACSST1Y2024.S1810.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of hous...

  15. ACS-ED 2014-2018 Total Population: Economic Characteristics (DP03)

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2014-2018 Total Population: Economic Characteristics (DP03) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2014-2018-total-population-economic-characteristics-dp03-7814e
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  16. f

    Data from: Trap characteristics and species morphology explain size-biased...

    • brill.figshare.com
    • datasetcatalog.nlm.nih.gov
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas M. Luhring; Grant M. Connette; Christopher M. Schalk (2023). Trap characteristics and species morphology explain size-biased sampling of two salamander species [Dataset]. http://doi.org/10.6084/m9.figshare.2413666.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Brill Online
    Authors
    Thomas M. Luhring; Grant M. Connette; Christopher M. Schalk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic studies often depend on sampling techniques providing representative samples from populations. However, the sequence of events leading up to a successful capture or detection is susceptible to biases introduced through individual-level behaviour or physiology. Passive sampling techniques may be especially prone to sampling bias caused by size-related phenomena (e.g., physical limitations on trap entrance). We tested for size-biased sampling among five types of passive traps using a 9-year data set for two species of aquatic salamanders that have a 20 and 61 fold change in length over their ontogeny (Amphiuma means, Siren lacertina). Size-biased trapping was evident for both species, with body size distributions (body length mean and SD) of captured individuals differing among sampling techniques. Because our two species differed in girth at similar lengths, we were able to show that size biases (in length) were most likely caused by girth limitations on trap entry rates, and potentially by differences in retention rates. Accounting for the biases of sampling techniques may be critical when assessing current population status and demographic change.

  17. V

    Virginia Population by Urban Area (ACS 5-Year)

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Population by Urban Area (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-population-by-urban-area-acs-5-year
    Explore at:
    csv(48058)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Area covered
    Virginia
    Description

    2013-2023 Virginia Population by Urban Area. Contains estimates.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B01001 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  18. V

    Virginia Means of Transportation to Work by Vehicles Available by Census...

    • data.virginia.gov
    csv
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2024). Virginia Means of Transportation to Work by Vehicles Available by Census Tract (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-means-of-transportation-to-work-by-vehicles-available-by-census-tract-acs-5-year
    Explore at:
    csv(6661949)Available download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Description

    2013-2023 Virginia Population by Means of Transportation to Work by Number of Vehicles Available by Census Tract. Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B08141 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  19. e

    HSRC Master Sample II - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). HSRC Master Sample II - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/96d7c5e3-e8c8-5eb6-a25b-c22ad9f86fba
    Explore at:
    Dataset updated
    Aug 12, 2025
    Description

    Description: The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, the SANHANES study in 2012 and SASAS 2007-2010 (adjacent EAs) to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. Abstract: A sample can be defined as a subset containing the characteristics of a larger population. Samples are used in statistical testing when population sizes are too large for the test to include all possible members or observations. A sample should represent the whole population and not reflect bias toward a specific attribute.[1] One of the most crucial aspects of sample design in household surveys is its frame. The sampling frame has significant implications on the cost and the quality of any survey, household or otherwise.[2] The sampling frame .... in a household survey must cover the entire target population. When that frame is used for multiple surveys or multiple rounds of the same survey it is known as a master sample frame or .... master sample.[3] A master sample is a sample drawn from a population for use on a number of future occasions, so as to avoid ad hoc sampling on each occasion. Sometimes the master sample is large and subsequent inquiries are based on a sub-sample from it.[4] The HSRC compiles master samples in order to construct samples for various HSRC research studies. The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, SASAS 2007-2010 and the SANHANES study in 2012 to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. The 2005 HSRC Master Sample was created in the following way: South Africa was delineated into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. An Enumeration area (EA) is the smallest geographical unit (piece of land) into which the country is divided for census or survey enumeration.[5] The concepts and definitions of terms used for Census 2001 comply in most instances with United Nations standards for censuses. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped using aerial photography to develop an HSRC master sample for selecting households. The ideal frame would be complete with respect to the target population if all of its members (the universe) are covered by the frame. Ideal characteristics of a master sample: The master frame should be as complete, accurate and current as practicable. A master sample frame for household surveys is typically developed from the most recent census, just as a regular sample frame is. Because the master frame may be used during an entire intercensal (between census) period, however, it will usually require periodic and regular updating such as every 2-3 years. This is in contrast to a regular frame which is more likely to be up-dated on an ad hoc basis and only when a particular survey is being planned[6] [1] http://www.investopedia.com/terms/s/sample.asp [2] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [3] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [4] A Dictionary of Statistical Terms, 5th edition, prepared for the International Statistical Institute by F.H.C. Marriott. Published for the International Statistical Institute by Longman Scientific and Technical. http://stats.oecd.org/glossary/detail.asp?ID=3708 [5] http://africageodownloads.info/128_mokgokolo.pdf [6] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf All enumeration areas (80 787 EAs) within the South African borders during the 2001 Census. The whole country was delimited into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped in all surveys using aerial photography to develop all HSRC master sample for selecting households. The first digit represents the province The second and third digits represent the municipality

  20. V

    Virginia Population by Language Spoken at Home by Ability to Speak English...

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Population by Language Spoken at Home by Ability to Speak English by Census Block Group (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-population-by-language-spoken-at-home-by-ability-to-speak-english-by-census-block-group
    Explore at:
    csv(28410756)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    2013-2023 Virginia Population by Age by Language Spoken at Home by Ability to Speak English for the Population 5 years and over by Census Block Group. Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B16004 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ministry of Social Affairs (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://datacatalog.ihsn.org/catalog/5178

Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro

Explore at:
Dataset updated
Sep 22, 2025
Dataset provided by
Strategic Marketing & Media Research Institute Group (SMMRI)
Ministry of Social Affairs
Time period covered
2003
Area covered
Serbia, Serbia and Montenegro
Description

Abstract

The study included four separate surveys:

  1. The LSMS survey of general population of Serbia in 2002
  2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

  3. The LSMS survey of general population of Serbia in 2003 (panel survey)

  4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

Objectives

LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

Geographic coverage

The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

Mode of data collection

Face-to-face [f2f]

Research instrument

In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

Response rate

During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

Search
Clear search
Close search
Google apps
Main menu