This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year.
DEFINITIONS
Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate.
Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state.
Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model.
NOTES
Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5).
Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used.
Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4).
The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that
1-α≤P({C│y})=∫p{θ │y}dθ,
where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6).
County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7).
SOURCES
National Center for Health Statistics. Vital statistics data available online, Natality all-county files. Hyattsville, MD. Published annually.
For details about file release and access policy, see NCHS data release and access policy for micro-data and compressed vital statistics files, available from: http://www.cdc.gov/nchs/nvss/dvs_data_release.htm.
For natality public-use files, see vital statistics data available online, available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
National Center for Health Statistics. U.S. Census populations with bridged race categories. Estimated population data available. Postcensal and intercensal files. Hyattsville, MD. Released annually.
For population files, see U.S. Census populations with bridged race categories, available from: https://www.cdc.gov/nchs/nvss/bridged_race.htm.
REFERENCES
Khan D, Rossen LM, Hamilton B, Dienes E, He Y, Wei R. Spatiotemporal trends in teen birth rates in the USA, 2003–2012. J R Stat Soc A 181(1):35–58. 2017. Available from: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12266/abstract.
Khan D, Rossen LM, Hamilton BE, He Y, Wei R, Dienes E. Hot spots, cluster detection and spatial outlier analysis of teen birth rates in the U.S., 2003–2012. Spat Spatiotemporal Epidemiol 21:67–75. 2017. Available from: http://www.sciencedirect.com/science/article/pii/S1877584516300442.
Rue H, Martino S, Lindgren F. INLA: Functions which allow to perform a full Bayesian analysis of structured additive models using Integrated Nested Laplace Approximation. R package, version 0.0. 2009.
Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71(2):319–92. 2009.
Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Mathews TJ. Births: Final data for 2015. National Vital Statistics Reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf (1.9 MB).
Carlin BP, Louis TA. Bayesian methods for data analysis. Boca Raton, FL: CRC Press, 2009.
National Center for Health Statistics. County geography changes: 1990–2012. Available from: http://www.cdc.gov/nchs/data/nvss/bridged_race/County_Geography_Changes.pdf (39 KB).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents information about total income distribution. The data covers the financial year of 2017-2018, and is based on Statistical Area Level 3 (SA3) according to the 2016 edition of the Australian Statistical Geography Standard (ASGS). Total Income is the sum of all reported income derived from Employee income, Own unincorporated business, Superannuation, Investments and Other income. Total income does not include the non-lodger population. Government pensions, benefits or allowances are excluded from the Australian Bureau of Statistics (ABS) income data and do not appear in Other income or Total income. Pension recipients can fall below the income threshold that necessitates them lodging a tax return, or they may only receive tax free pensions or allowances. Hence they will be missing from the personal income tax data set. Recent estimates from the ABS Survey of Income and Housing (which records Government pensions and allowances) suggest that this component can account for between 9% to 11% of Total income. All monetary values are presented as gross pre-tax dollars, as far as possible. This means they reflect income before deductions and loses, and before any taxation or levies (e.g. the Medicare levy or the temporary budget repair levy) are applied. The amounts shown are nominal, they have not been adjusted for inflation. The income presented in this release has been categorised into income types, these categories have been devised by the ABS to closely align to ABS definitions of income. The statistics in this release are compiled from the Linked Employer Employee Dataset (LEED), a cross-sectional database based on administrative data from the Australian taxation system. The LEED includes more than 120 million tax records over seven consecutive years between 2011-12 and 2017-18. Please note: All personal income tax statistics included in LEED were provided in de-identified form with no home address or date of birth. Addresses were coded to the ASGS and date of birth was converted to an age at 30 June of the reference year prior to data provision.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents information about total income. The data covers the financial years 2011-12 to 2017-18, and is based on Statistical Area Level 2 (SA2) according to the 2016 edition of the Australian Statistical Geography Standard (ASGS). Total Income is the sum of all reported income derived from Employee income, Own unincorporated business, Superannuation, Investments and Other income. Total income does not include the non-lodger population. Government pensions, benefits or allowances are excluded from the Australian Bureau of Statistics (ABS) income data and do not appear in Other income or Total income. Pension recipients can fall below the income threshold that necessitates them lodging a tax return, or they may only receive tax free pensions or allowances. Hence they will be missing from the personal income tax data set. Recent estimates from the ABS Survey of Income and Housing (which records Government pensions and allowances) suggest that this component can account for between 9% to 11% of Total income. All monetary values are presented as gross pre-tax dollars, as far as possible. This means they reflect income before deductions and loses, and before any taxation or levies (e.g. the Medicare levy or the temporary budget repair levy) are applied. The amounts shown are nominal, they have not been adjusted for inflation. The income presented in this release has been categorised into income types, these categories have been devised by the ABS to closely align to ABS definitions of income. The statistics in this release are compiled from the Linked Employer Employee Dataset (LEED), a cross-sectional database based on administrative data from the Australian taxation system. The LEED includes more than 120 million tax records over seven consecutive years between 2011-12 and 2017-18. Please note: All personal income tax statistics included in LEED were provided in de-identified form with no home address or date of birth. Addresses were coded to the ASGS and date of birth was converted to an age at 30 June of the reference year prior to data provision.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in England and Wales by economic activity status and by country of birth. The estimates are as at Census Day, 21 March 2021.
As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:
Economic activity status
People aged 16 years and over are economically active if, between 15 March and 21 March 2021, they were:
It is a measure of whether or not a person was an active participant in the labour market during this period. Economically inactive are those aged 16 years and over who did not have a job between 15 March to 21 March 2021 and had not looked for work between 22 February to 21 March 2021 or could not start work within two weeks.
The census definition differs from International Labour Organization definition used on the Labour Force Survey, so estimates are not directly comparable.
This classification splits out full-time students from those who are not full-time students when they are employed or unemployed. It is recommended to sum these together to look at all of those in employment or unemployed, or to use the four-category labour market classification, if you want to look at all those with a particular labour market status.
Country of birth
The country in which a person was born.
For people not born in one of in the four parts of the UK, there was an option to select "elsewhere".
People who selected "elsewhere" were asked to write in the current name for their country of birth.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year.
DEFINITIONS
Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate.
Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state.
Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model.
NOTES
Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5).
Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used.
Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4).
The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that
1-α≤P({C│y})=∫p{θ │y}dθ,
where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6).
County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7).
SOURCES
National Center for Health Statistics. Vital statistics data available online, Natality all-county files. Hyattsville, MD. Published annually.
For details about file release and access policy, see NCHS data release and access policy for micro-data and compressed vital statistics files, available from: http://www.cdc.gov/nchs/nvss/dvs_data_release.htm.
For natality public-use files, see vital statistics data available online, available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
National Center for Health Statistics. U.S. Census populations with bridged race categories. Estimated population data available. Postcensal and intercensal files. Hyattsville, MD. Released annually.
For population files, see U.S. Census populations with bridged race categories, available from: https://www.cdc.gov/nchs/nvss/bridged_race.htm.
REFERENCES
Khan D, Rossen LM, Hamilton B, Dienes E, He Y, Wei R. Spatiotemporal trends in teen birth rates in the USA, 2003–2012. J R Stat Soc A 181(1):35–58. 2017. Available from: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12266/abstract.
Khan D, Rossen LM, Hamilton BE, He Y, Wei R, Dienes E. Hot spots, cluster detection and spatial outlier analysis of teen birth rates in the U.S., 2003–2012. Spat Spatiotemporal Epidemiol 21:67–75. 2017. Available from: http://www.sciencedirect.com/science/article/pii/S1877584516300442.
Rue H, Martino S, Lindgren F. INLA: Functions which allow to perform a full Bayesian analysis of structured additive models using Integrated Nested Laplace Approximation. R package, version 0.0. 2009.
Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71(2):319–92. 2009.
Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Mathews TJ. Births: Final data for 2015. National Vital Statistics Reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf (1.9 MB).
Carlin BP, Louis TA. Bayesian methods for data analysis. Boca Raton, FL: CRC Press, 2009.
National Center for Health Statistics. County geography changes: 1990–2012. Available from: http://www.cdc.gov/nchs/data/nvss/bridged_race/County_Geography_Changes.pdf (39 KB).