Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents the results of the experimentation of a method for evaluating semantic similarity between concepts in a taxonomy. The method is based on the information-theoretic approach and allows senses of concepts in a given context to be considered. Relevance of senses is calculated in terms of semantic relatedness with the compared concepts. In a previous work [9], the adopted semantic relatedness method was the one described in [10], while in this work we also adopted the ones described in [11], [12], [13], [14], [15], and [16].
We applied our proposal by extending 7 methods for computing semantic similarity in a taxonomy, selected from the literature. The methods considered in the experiment are referred to as R[2], W&P[3], L[4], J&C[5], P&S[6], A[7], and A&M[8]
The experiment was run on the well-known Miller and Charles benchmark dataset [1] for assessing semantic similarity.
The results are organized in seven folders, each with the results related to one of the above semantic relatedness methods. In each folder there is a set of files, each referring to one pair of the Miller and Charles dataset. In fact, for each pair of concepts, all the 28 pairs are considered as possible different contexts.
REFERENCES [1] Miller G.A., Charles W.G. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1). [2] Resnik P. 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Int. Joint Conf. on Artificial Intelligence, Montreal. [3] Wu Z., Palmer M. 1994. Verb semantics and lexical selection. 32nd Annual Meeting of the Associations for Computational Linguistics. [4] Lin D. 1998. An Information-Theoretic Definition of Similarity. Int. Conf. on Machine Learning. [5] Jiang J.J., Conrath D.W. 1997. Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Inter. Conf. Research on Computational Linguistics. [6] Pirrò G. 2009. A Semantic Similarity Metric Combining Features and Intrinsic Information Content. Data Knowl. Eng, 68(11). [7] Adhikari A., Dutta B., Dutta A., Mondal D., Singh S. 2018. An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology. J. Assoc. Inf. Sci. Technol. 69(8). [8] Adhikari A., Singh S., Mondal D., Dutta B., Dutta A. 2016. A Novel Information Theoretic Framework for Finding Semantic Similarity in WordNet. CoRR, arXiv:1607.05422, abs/1607.05422. [9] Formica A., Taglino F. 2021. An Enriched Information-Theoretic Definition of Semantic Similarity in a Taxonomy. IEEE Access, vol. 9. [10] Information Content-based approach [Schuhmacher and Ponzetto, 2014]. [11] Linked Data Semantic Distance (LDSD) [Passant, 2010]. [12] Wikipedia Link-based Measure (WLM ) [Witten and Milne, 2008]; [13] Linked Open Data Description Overlap-based approach (LODDO) [Zhou et al. 2012] [14] Exclusivity-based [Hulpuş et al 2015] [15] ASRMP [El Vaigh et al. 2020] [16] LDSDGN [Piao and Breslin, 2016]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An available dataset consists of a total of 77 female participants in two experiments (N = 34 and 43 for Experiment 1 and 2, respectively).Behavioral data includes accuracy and reaction time during the face classification tasks, attractiveness rating scores, and the self-assessment manikin (SAM) rating scores for the valence and arousal dimensions.Event-related potential data includes mean amplitudes of the N170 (120-170 ms), P200 (200-230 ms), early posterior negativity (EPN, 240-280 ms), P300 (300-500 ms), and late positive potential (LPP, 500-1000 ms) components.Datasets for Experiment 2 (i.e. experiment2_behavioral_data.csv and experiment2_erp_data.csv) have abbreviated headings. The following abbreviations have the following meaning:"smk" means Makeup × One’s own face condition."snm" means No makeup × One’s own face condition."omk" means Makeup × Another female’s face condition."onm" means No makeup × Another female’s face condition.The data was collected in Shiseido Global Innovation Center under the approval of the ethical committee of the Shiseido Global Innovation Center.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is for the study of task decomposition effects in time estimation: the role of future boundaries and thought focus, and supplementary materials. Due to the previous research on the impact of task decomposition on time estimation, the role of time factors was often overlooked. For example, with the same decomposition, people subjectively set different time boundaries when facing difficult and easy tasks. Therefore, taking into account the time factor is bound to improve and integrate the research conclusions of decomposition effects. Based on this, we studied the impact of task decomposition and future boundaries on time estimation. Experiment 1 passed 2 (task decomposition/no decomposition) × Design an inter subject experiment with/without future boundaries, using the expected paradigm to measure the time estimation of participants; Experiment 2 further manipulates the time range of future boundaries based on Experiment 1, using 2 (task decomposition/non decomposition) × 3 (future boundaries of longer/shorter/medium range) inter subject experimental design, using expected paradigm to measure time estimation of subjects; On the basis of Experiment 2, Experiment 3 further verified the mechanism of the influence of the time range of future boundaries under decomposition conditions on time estimation. Through a single factor inter subject experimental design, a thinking focus scale was used to measure the thinking focus of participants under longer and shorter boundary conditions. Through the above experiments and measurements, we have obtained the following dataset. Experiment 1 Table Data Column Label Meaning: Task decomposition into grouped variables: 0 represents decomposition; 1 indicates no decomposition The future boundary is a grouping variable: 0 represents existence; 1 means it does not exist Zsco01: Standard score for estimating total task time A logarithm: The logarithmic value of the estimated time for all tasks Experiment 2 Table Data Column Label Meaning: The future boundary is a grouping variable: 7 represents shorter, 8 represents medium, and 9 represents longer The remaining data labels are the same as Experiment 1 Experiment 3 Table Data Column Label Meaning: Zplan represents the standard score for the focus plan score Zbar represents the standard score for attention barriers The future boundary is a grouping variable: 0 represents shorter, 1 represents longer
This is digital research data corresponding to the manuscript, Reinhart, K.O., Vermeire, L.T. Precipitation Manipulation Experiments May Be Confounded by Water Source. J Soil Sci Plant Nutr (2023). https://doi.org/10.1007/s42729-023-01298-0 Files for a 3x2x2 factorial field experiment and water quality data used to create Table 1. Data for the experiment were used for the statistical analysis and generation of summary statistics for Figure 2. Purpose: This study aims to investigate the consequences of performing precipitation manipulation experiments with mineralized water in place of rainwater (i.e. demineralized water). Limited attention has been paid to the effects of water mineralization on plant and soil properties, even when the experiments are in a rainfed context. Methods: We conducted a 6-yr experiment with a gradient in spring rainfall (70, 100, and 130% of ambient). We tested effects of rainfall treatments on plant biomass and six soil properties and interpreted the confounding effects of dissolved solids in irrigation water. Results: Rainfall treatments affected all response variables. Sulfate was the most common dissolved solid in irrigation water and was 41 times more abundant in irrigated (i.e. 130% of ambient) than other plots. Soils of irrigated plots also had elevated iron (16.5 µg × 10 cm-2 × 60-d vs 8.9) and pH (7.0 vs 6.8). The rainfall gradient also had a nonlinear (hump-shaped) effect on plant available phosphorus (P). Plant and microbial biomasses are often limited by and positively associated with available P, suggesting the predicted positive linear relationship between plant biomass and P was confounded by additions of mineralized water. In other words, the unexpected nonlinear relationship was likely driven by components of mineralized irrigation water (i.e. calcium, iron) and/or shifts in soil pH that immobilized P. Conclusions: Our results suggest robust precipitation manipulation experiments should either capture rainwater when possible (or use demineralized water) or consider the confounding effects of mineralized water on plant and soil properties. Resources in this dataset: Resource Title: Readme file- Data dictionary File Name: README.txt Resource Description: File contains data dictionary to accompany data files for a research study. Resource Title: 3x2x2 factorial dataset.csv File Name: 3x2x2 factorial dataset.csv Resource Description: Dataset is for a 3x2x2 factorial field experiment (factors: rainfall variability, mowing seasons, mowing intensity) conducted in northern mixed-grass prairie vegetation in eastern Montana, USA. Data include activity of 5 plant available nutrients, soil pH, and plant biomass metrics. Data from 2018. Resource Title: water quality dataset.csv File Name: water quality dataset.csv Resource Description: Water properties (pH and common dissolved solids) of samples from Yellowstone River collected near Miles City, Montana. Data extracted from Rinella MJ, Muscha JM, Reinhart KO, Petersen MK (2021) Water quality for livestock in northern Great Plains rangelands. Rangeland Ecol. Manage. 75: 29-34.
Included are data from triaxial, single-inclined-fracture friction experiments. The experiments were performed with slide-hold-slide protocol on Utah FORGE gneiss at increased temperature. With a ~10 MPa normal stress, temperatures vary between experiments from room temperature up to 163 Celsius. Hold times vary during experiment from ~10^1 to ~10^5 seconds. Measured are the frictional response upon reactivation after a hold period, active acoustic data (P-wave velocity and amplitude) and passive acoustic data (acoustic emission occurrence and amplitude). There are two types of datafiles: (1) Datafiles containing the friction data, including the temperature and the active acoustic data measured during the experiment (AEXX_Gneiss_Vp_mixref4). The underscore _Vp means that it includes the Vp or P-wave velocity data, with _mixref meaning that we use a mixed reference point for calculating the P-wave velocity. And (2) the datafiles containing the passive acoustics data, a catalog of the acoustic emissions (AE's) measured during the experiment (AEcatalog_AEXX_runX), where AEXX matches the experiment number and runX denotes which part of the experiment the data was collected, matching the times where active acoustic data was collected. AE catalogs are split in two parts when the file size exceeds 1 GB to aid download/opening times.
This item contains data and code used in experiments that produced the results for Sadler et. al (2022) (see below for full reference). We ran five experiments for the analysis, Experiment A, Experiment B, Experiment C, Experiment D, and Experiment AuxIn. Experiment A tested multi-task learning for predicting streamflow with 25 years of training data and using a different model for each of 101 sites. Experiment B tested multi-task learning for predicting streamflow with 25 years of training data and using a single model for all 101 sites. Experiment C tested multi-task learning for predicting streamflow with just 2 years of training data. Experiment D tested multi-task learning for predicting water temperature with over 25 years of training data. Experiment AuxIn used water temperature as an input variable for predicting streamflow. These experiments and their results are described in detail in the WRR paper. Data from a total of 101 sites across the US was used for the experiments. The model input data and streamflow data were from the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset (Newman et. al 2014, Addor et. al 2017). The water temperature data were gathered from the National Water Information System (NWIS) (U.S. Geological Survey, 2016). The contents of this item are broken into 13 files or groups of files aggregated into zip files:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using CAD tools. The experimental design aimed at providing a straight-forward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by employing magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion.
https://www.nist.gov/open/licensehttps://www.nist.gov/open/license
The Intelligent Building Agents (IBA) project is part of the Embedded Intelligence in Buildings Program in the Engineering Laboratory at the National Institute of Standards and Technology (NIST). A key part of the IBA Project is the IBA Laboratory (IBAL), a unique facility consisting of a mixed system of off the shelf equipment, including chillers and air handling units, controlled by a data acquisition system and capable of supporting building system optimization research under realistic and reproducible operating conditions. The database contains the values of approximately 300 sensors/actuators in the IBAL, including both sensor measurements and control actions, as well as approximately 850 process data, which are typically related to control settings and decisions. Each of the sensors/actuators has associated metadata. The metadata, sensors/actuators, and process data are defined on the "metadata", "sensors", and "parameters" tabs in the definitions file. Data are collected every 10 s. The database contains two dashboards: 1) Experiments - select data from individual experiments and 2) Measurements - select individual sensor/actuator and parameter data. The Experiments Dashboard contains three sections. The "Experiment Data Plot" shows plots of the sensor/actuator data selected in the second section, "Experiment/Metadata". There are plots of both scaled and raw data (see the meta data file for the conversion from raw to scaled data). Underneath the plots is a "Download CSV" button; select that button and a csv file of the data in the plot is automatically generated. In "Experiment/Metadata", first select an "Experiment" from the options in the table on the left. A specific experiment or type of experiment can be found by entering terms in the search box. For example, searching for the word "Charge" will bring up experiments in which the ice thermal storage tank is charged. The table of experiments also includes the duration of the experiment in minutes. Once an experiment is selected, specific sensor/actuator data points can be selected from the "Measurements" table on the right. These data can be filtered by subsystem (e.g., primary loop, secondary loop, Chiller1) and/or measurement type (e.g., pressure, flow, temperature). These data will then be shown in the plots at the top. The final section, "Process", contains the process data, which are shown by the subsystem. These data are not shown in the plots but can be downloaded by selecting the "Download CSV" button in the "Process" section. The Measurements Dashboard contains three sections. The "Date Range" section is used to select the time range of the data. The "All Measurements" section is used to select specific sensor/actuator data. As in the Experiments Dashboard, these data can be filtered by subsystem and/or measurement type. The scaled and raw values of the selected data are then plotted in the "Historical Data Plot" section. The "Download CSV" button underneath the plots will automatically download the selected data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains raw and pre-processed EEG data from a mobile EEG study investigating the effects of cognitive task demands, motor demands, and environmental complexity on attentional processing (see below for experiment details).
All preprocessing and analysis code is deposited in the code
directory. The entire MATLAB pipeline can be reproduced by executing the run_pipeline.m
script. In order to run these scripts, you will need to ensure you have the required MATLAB toolboxes and R packages on your system. You will also need to adapt def_local.m
to specify local paths to MATLAB and EEGLAB. Descriptive statistics and mixed-effects models can be reproduced in R by running the stat_analysis.R
script.
See below for software details.
In addition to citing this dataset, please cite the original manuscript reporting data collection and experimental procedures.
For more information, see the dataset_description.json
file.
ODC Open Database License (ODbL). For more information, see the LICENCE
file.
Dataset is formatted according to the EEG-BIDS extension (Pernet et al., 2019) and the BIDS extension proposal for common electrophysiological derivatives (BEP021) v0.0.1, which can be found here:
Note that BEP021 is still a work in progress as of 2021-03-01.
Generally, you can find data in the .tsv files and descriptions in the accompanying .json files.
An important BIDS definition to consider is the "Inheritance Principle" (see 3.5 in the BIDS specification: http://bids.neuroimaging.io/bids_spec.pdf), which states:
Any metadata file (.json, .bvec, .tsv, etc.) may be defined at any directory level. The values from the top level are inherited by all lower levels unless they are overridden by a file at the lower level.
Forty-four healthy adults aged 18-40 performed an oddball task involving complex tone (piano and horn) stimuli in three settings: (1) sitting in a quiet room in the lab (LAB); (2) walking around a sports field (FIELD); (3) navigating a route through a university campus (CAMPUS).
Participants performed each environmental condition twice: once while attending to oddball stimuli (i.e. counting the number of presented deviant tones; COUNT), and once while disregarding or ignoring the tone stimuli (IGNORE).
EEG signals were recorded from 32 active electrodes using a Brain Vision LiveAmp 32 amplifier. See manuscript for further details.
MATLAB Version: 9.7.0.1319299 (R2019b) Update 5 MATLAB License Number: 678256 Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 18363) Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
The following toolboxes/helper functions were also used:
R version 3.6.2 (2019-12-12)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale: _LC_COLLATE=English_Australia.1252_, _LC_CTYPE=English_Australia.1252_, _LC_MONETARY=English_Australia.1252_, _LC_NUMERIC=C_ and _LC_TIME=English_Australia.1252_
attached base packages:
other attached packages:
loaded via a namespace (and not attached):
This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Digital Collections of Colorado (http://digitool.library.colostate.edu/R/?func=collections&collection_id=3429). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. Additional information and referenced materials can be found: http://hdl.handle.net/10217/82454. Carbon isotopes of elevated and ambient OTC plants were measured for use in isotope labeling and plant water-use-efficiency measures. Leaf N and C are associated parameters were also measured. This research was conducted at the Central Plains Experimental Range, near Nunn, CO; lat.40degrees 40 minutes N; long. 104 degrees 45 minutes W in the shortgrass steppe region of NE Colorado, USA and as a collaboration between SGS-LTER and USDA-ARS researchers. Resources in this dataset:Resource Title: Website Pointer to html file. File Name: Web Page, url: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sgs&identifier=155 Webpage with information and links to data files for download
This dataset contains a number of experiments where sensory data is requested from a remote robot through the Internet. Each experiment is a time series of the roundtrip delays measured, which include network, operating systems and application delays. It includes experiments carried out in different geographical locations, with different software architectures and robots, also simulated ones.
The range of the parameters that define the experiments (geographical location, amount of data requested, software in the loop, network technologies, etc.) is very broad.
Some of these experiments have been reported previously in scientific publications, such as DOI 10.1109/JSEN.2013.2263381 and DOI 10.3390/s140202305. Other have been added afterwards.
Each experiment consists of 2 files in plain text: a CSV one with the time series and a TXT one with the metadata:
-Unique ID of the experiment-A short name (abbreviation).-Class (out of a number of classes; 'sim' means simulated).-Time units (milliseconds if absent)-Amount (density) of sensory data requested.-Kind of network (wifi, wired, mixed, etc.).-Geographical distance (approximate) and/or geographical location of robot and station.-Software used in both the robot and the station (OS, frameworks, etc.).-Date of the experiment (if available).
Four eddy-covariance (EC) sensors were deployed at two heights upwind and within alfalfa plot trials at San Joaquin Valley Ag Science Center. The purpose of the experiment was to evaluate the robustness of flux footprint models under different atmospheric stability conditions. At each of the two locations, an EC sensor was mounted at an unconventionally low height (~1 meter) and a second at a more typical height (~2.5 m). Supplementary sensors were co-located to measure net radiation, soil heat flux, and other parameters necessary to evaluate closure of the surface energy budget. The southeast station was located at the downwind edge of a 2 acre plot trial of irrigated alfalfa, arranged in small blocks. The upwind fetch (with respect to predominant day time wind direction) included less than 100 meters of semi-homogeneous conditions. Soil sensors were duplicated across the alfalfa blocks and inter-block alleys which were irrigated but not planted. The northwest station was located approximately 25 meters upwind of the irrigated alfalfa plot trials in fallow, non-irrigated bare field. Raw 10 Hz infrared gas analyzer and sonic anemometer data, and 30 minute averaged data from other sensors are provided. Resources in this dataset: Title: Data dictionary for SEB files from southeast station (in zipped folder) Filename: ALF2021_SEBSE_header.csv Description: Contains variable names, description of sensors, units, and required metadata for each variable. Title: Data dictionary for SEB files from northwest station (zipped folder) Filename: ALF2021_SEBNW_header.csv Description: Contains variable names, description of sensors, units, and required metadata for each variable. Title: Data dictionary for EC files from SE station (zipped folder) Filename: ALF2021_ECSE_header.csv Description: Contains variable names, description of sensors, units, and required metadata for each variable. Title: Data dictionary for EC files from NW station (zipped folder) Filename: ALF2021_ECNW_header.csv Description: Contains variable names, description of sensors, units, and required metadata for each variable. Title: SJVASC Alfalfa 2021- NW station Filename: EC2_alfNW.zip Title: SJVASC Alfalfa 2021- SE station Filename: EC2_alfSE.zip Resources in this dataset:Resource Title: SJVASC Alfalfa 2021- NW station. File Name: EC2_alfNW.zipResource Title: SJVASC Alfalfa 2021- SE station. File Name: EC2_alfSE.zipResource Title: Data dictionary for EC files from NW station (zipped folder). File Name: ALF2021_ECNW_header.csvResource Title: Data dictionary for EC files from SE station (zipped folder). File Name: ALF2021_ECSE_header.csvResource Title: Data dictionary for SEB files from northwest station (zipped folder). File Name: ALF2021_SEBNW_header.csvResource Title: Data dictionary for SEB files from southeast station (in zipped folder). File Name: ALF2021_SEBSE_header.csv
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset was generated as part of the CSE Research Project course. The topic of this research was assessing whether the CHSH game quantum network application should be included in the first ever quantum network benchmark suite. Hence, the main research question was whether the CHSH game application is sensitive in determine errors in the total quantum network system. To answer this question multiple experiment were performed using the SquidASM software development kit to simulate different quantum networks. This dataset contains all the raw data obtain from these experiments meaning the input and output values of each CHSH game. Each experiments assumes a perfect quantum network apart from a single property that is used as the independent variable. Then, using three performance metrics defined in the attached paper three plots are created in the workbook file. For more details, the full paper of the study can be found in the data link section.
This document presents the Concise Experiment Plan for NASA's Arctic-Boreal Vulnerability Experiment (ABoVE) to serve as a guide to the Program as it identifies the research to be conducted under this study. Research for ABoVE will link field-based, process-level studies with geospatial data products derived from airborne and satellite remote sensing, providing a foundation for improving the analysis and modeling capabilities needed to understand and predict ecosystem responses and societal implications. The ABoVE Concise Experiment Plan (ACEP) outlines the conceptual basis for the Field Campaign and expresses the compelling rationale explaining the scientific and societal importance of the study. It presents both the science questions driving ABoVE research as well as the top-level requirements for a study design to address them.
This parent dataset (collection of datasets) describes the general organization of data in the datasets for each growing season (two-year period) when winter wheat (Triticum aestivum L.) was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Winter wheat was grown on two large, precision weighing lysimeters, calibrated to NIST standards (Howell et al., 1995). Each lysimeter was in the center of a 4.44 ha square field on which wheat was also grown (Evett et al., 2000). The two fields were contiguous and arranged with one directly north of the other. See the resource titled "Geographic Coordinates, USDA, ARS, Bushland, Texas" for UTM geographic coordinates for field and lysimeter locations. Wheat was planted in Autumn and grown over the winter in 1989-1990, 1991-1992, and 1992-1993. Agronomic calendar for the each of the three growing seasons list by date the agronomic practices applied, severe weather, and activities (e.g., planting, thinning, fertilization, pesticide application, lysimeter maintenance, harvest) in and on lysimeters that could influence crop growth, water use, and lysimeter data. These include fertilizer and pesticide applications. Irrigation was by linear move sprinkler system equipped with pressure regulated low pressure sprays (mid-elevation spray application, MESA). Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a field-calibrated (Evett and Steiner, 1995) neutron probe from 0.10- to 2.4-m depth in the field. The lysimeters and fields were planted to the same plant density, row spacing, tillage depth (by hand on the lysimeters and by machine in the fields), and fertilizer and pesticide applications. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-min intervals, and the 5-min change in soil water storage was used along with precipitation, dew and frost accumulation, and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-min intervals. Each lysimeter was equipped with a suite of instruments to sense wind speed, air temperature and humidity, radiant energy (incoming and reflected, typically both shortwave and longwave), surface temperature, soil heat flux, and soil temperature, all of which are reported at 15-min intervals. Instruments used changed from season to season, which is another reason that subsidiary datasets and data dictionaries for each season are required. The Bushland weighing lysimeter research program was described by Evett et al. (2016), and lysimeter design is described by Marek et al. (1988). Important conventions concerning the data-time correspondence, sign conventions, and terminology specific to the USDA ARS, Bushland, TX, field operations are given in the resource titled "Conventions for Bushland, TX, Weighing Lysimeter Datasets". There are six datasets in this collection. Common symbols and abbreviations used in the datasets are defined in the resource titled, "Symbols and Abbreviations for Bushland, TX, Weighing Lysimeter Datasets". Datasets consist of Excel (xlsx) files. Each xlsx file contains an Introductory tab that explains the other tabs, lists the authors, describes conventions and symbols used and lists any instruments used. The remaining tabs in a file consist of dictionary and data tabs. The six datasets are as follows: Agronomic Calendars for the Bushland, Texas Winter Wheat Datasets Growth and Yield Data for the Bushland, Texas Winter Wheat Datasets Weighing Lysimeter Data for The Bushland, Texas Winter Wheat Datasets Soil Water Content Data for The Bushland, Texas, Large Weighing Lysimeter Experiments Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Winter Wheat Datasets Standard Quality Controlled Research Weather Data – USDA-ARS, Bushland, Texas See the README for descriptions of each dataset. The soil is a Pullman series fine, mixed, superactive, thermic Torrertic Paleustoll. Soil properties are given in the resource titled "Soil Properties for the Bushland, TX, Weighing Lysimeter Datasets". The land slope in the lysimeter fields is <0.3% and topography is flat. The mean annual precipitation is ~470 mm, the 20-year pan evaporation record indicates ~2,600 mm Class A pan evaporation per year, and winds are typically from the South and Southwest. The climate is semi-arid with ~70% (350 mm) of the annual precipitation occurring from May to September, during which period the pan evaporation averages ~1520 mm. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have described the facilities and research methods (Evett et al., 2016), and have focused on winter wheat ET (Howell et al., 1995, 1997, 1998), and crop coefficients (Howell et al., 2006; Schneider and Howell, 1997, 2001) that have been used by ET networks for irrigation management. The data have utility for developing, calibrating, and testing simulation models of crop ET, growth, and yield (Evett et al., 1994; Kang et al., 2009), and have been used by several universities and for testing, and calibrating models of ET that use satellite and/or weather data. Resources in this dataset: Resource Title: Geographic Coordinates of Experimental Assets, Weighing Lysimeter Experiments, USDA, ARS, Bushland, Texas. File Name: Geographic Coordinates, USDA, ARS, Bushland, Texas.xlsx. Resource Description: The file gives the UTM latitude and longitude of important experimental assets of the Bushland, Texas, USDA, ARS, Conservation & Production Research Laboratory (CPRL). Locations include weather stations [Soil and Water Management Research Unit (SWMRU) and CPRL], large weighing lysimeters, and corners of fields within which each lysimeter was centered. There were four fields designated NE, SE, NW, and SW, and a weighing lysimeter was centered in each field. The SWMRU weather station was adjacent to and immediately east of the NE and SE lysimeter fields. Resource Title: Conventions for Bushland, TX, Weighing Lysimeter Datasets. File Name: Conventions for Bushland, TX, Weighing Lysimeter Datasets.xlsx. Resource Description: Descriptions of conventions and terminology used in the Bushland, TX, weighing lysimeter research program. Resource Title: Symbols and Abbreviations for Bushland, TX, Weighing Lysimeter Datasets. File Name: Symbols and Abbreviations for Bushland, TX, Weighing Lysimeter Datasets.xlsx. Resource Description: Definitions of symbols and abbreviations used in the Bushland, TX, weighing lysimeter research datasets. Resource Title: Soil Properties for the Bushland, TX, Weighing Lysimeter Datasets. File Name: Bushland_TX_soil_properties.xlsx. Resource Description: Soil properties useful for simulation modeling and for describing the soil are given for the Pullman soil series at the USDA, ARS, Conservation & Production Research Laboratory, Bushland, TX, USA. For each soil layer, soil horizon designation and texture according to USDA Soil Taxonomy, bulk density, porosity, water content at field capacity (33 kPa) and permanent wilting point (1500 kPa), percent sand, percent silt, percent clay, percent organic matter, pH, and van Genuchten-Mualem characteristic curve parameters describing the soil hydraulic properties are given. A separate table describes the soil horizon thicknesses, designations, and textures according to USDA Soil Taxonomy. Another table describes important aspects of the soil hydrologic and rooting behavior. Resource Title: README - Bushland Texas Winter Wheat collection. File Name: README_Bushland_winter_wheat_collection.pdf. Resource Description: Descriptions of the datasets in the Bushland Texas Winter Wheat collection
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data dictionary and brochure for REAP (Resilient Economic Agricultural Practices). https://data.nal.usda.gov/node/5594
Data Entry Template 2017 includes
Excel templates for Experiment description worksheets, Site characterization worksheets, Management worksheets, Measurement worksheets where experimental unit data are reported, and Information that may be useful to the user, including drop down lists of treatment specific information and ranges of expected values. General and introductory instructions, as well as a Data Validation check are also included.A data dictionary typically provides a detailed description for each element or variable in a dataset or data model. Data dictionaries are used to document important and useful information such as a descriptive name, the data type, allowed values, units, and text description.Dataset citation: (dataset) USDA Agricultural Research Service. (2017). REAP (Resilient Economic Agricultural Practices). Agricultural Research Service. https://doi.org/10.15482/USDA.ADC/1372394.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GX Dataset downsampled - Experiment 1
The GX Dataset is a dataset of combined tES, EEG, physiological, and behavioral signals from human subjects.
Here the GX Dataset for Experiment 1 is downsampled to 1 kHz and saved in .MAT format which can be used in both MATLAB and Python.
Publication
A full data descriptor is published in Nature Scientific Data. Please cite this work as:
Gebodh, N., Esmaeilpour, Z., Datta, A. et al. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 8, 274 (2021). https://doi.org/10.1038/s41597-021-01046-y
Descriptions
A dataset combining high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data includes within subject application of nine High-Definition tES (HD-tES) types targeted three brain regions (frontal, motor, parietal) with three waveforms (DC, 5Hz, 30Hz), with more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics.
Acknowledgments
Portions of this study were funded by X (formerly Google X), the Moonshot Factory. The funding source had no influence on study conduction or result evaluation. MB is further supported by grants from the National Institutes of Health: R01NS101362, R01NS095123, R01NS112996, R01MH111896, R01MH109289, and (to NG) NIH-G-RISE T32GM136499.
Extras
Back to Full GX Dataset : https://doi.org/10.5281/zenodo.4456079
For downsampled data (1 kHz ) please see (in .mat format):
Code used to import, process, and plot this dataset can be found here:
Additional figures for this project have been shared on Figshare. Trial-wise figures can be found here:
The full dataset is also provided in BIDS format here:
Data License
Creative Common 4.0 with attribution (CC BY 4.0)
NOTE
Please email ngebodh01@citymail.cuny.edu with any questions.
Updates
As a subset of the Japanese 55-year Reanalysis (JRA-55) project, an experiment using the global atmospheric model of the JRA-55 was conducted by the Meteorological Research Institute of the Japan Meteorological Agency. The experiment, named the JRA-55AMIP, has been carried out by prescribing the same boundary conditions and radiative forcing of JRA-55, including the historical observed sea surface temperature, sea ice concentration, greenhouse gases, etc., with no use of atmospheric observational data. This project is intended to assess systematic errors of the model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In genomic study, log transformation is a common prepossessing step to adjust for skewness in data. This standard approach often assumes that log-transformed data is normally distributed, and two sample t-test (or its modifications) is used for detecting differences between two experimental conditions. However, recently it was shown that two sample t-test can lead to exaggerated false positives, and the Wilcoxon-Mann-Whitney (WMW) test was proposed as an alternative for studies with larger sample sizes. In addition, studies have demonstrated that the specific distribution used in modeling genomic data has profound impact on the interpretation and validity of results. The aim of this paper is three-fold: 1) to present the Exp-gamma distribution (exponential-gamma distribution stands for log-transformed gamma distribution) as a proper biological and statistical model for the analysis of log-transformed protein abundance data from single-cell experiments; 2) to demonstrate the inappropriateness of two sample t-test and the WMW test in analyzing log-transformed protein abundance data; 3) to propose and evaluate statistical inference methods for hypothesis testing and confidence interval estimation when comparing two independent samples under the Exp-gamma distributions. The proposed methods are applied to analyze protein abundance data from a single-cell dataset.
ERA-Interim represents a major undertaking by ECMWF (European Centre for Medium-Range Weather Forecasts) to produce a reanalysis with an improved atmospheric model and assimilation system which replaces those used in ERA-40, particularly for the data-rich 1990s and 2000s, and to be continued as an ECMWF Climate Data Assimilation System (ECDAS) until superseded by a new extended reanalysis. Preliminary runs indicated that several of the inaccuracies exhibited by ERA-40 such as too-strong precipitation over oceans from the early 1990s onwards and a too-strong Brewer-Dobson circulation in the stratosphere, were eliminated or significantly reduced. Production of ERA-Interim, from 1989 onwards, began in summer of 2006. (The period 1979-1988 was prepended in 2011.)
Through systematic increases of computing power, 4-dimensional variational assimilation (4D-Var) became feasible and part of ECMWF operations since 1997, paving the way to base ERA-Interim on 4D-Var (rather than 3D-Var as in ERA-40). Enhanced computing power also allowed horizontal resolution to be increased from T159 (N80, nominally 1.125 degrees for ERA-40) to T255 (N128, nominally 0.703125 degrees), and the latest cycle of the atmospheric model (IFS CY31r1 and CY31r2) to be used, taking advantage of improved model physics. ERA-interim retains the same 60 model levels used for ERA-40 with the highest level being 0.1 hectopascal. In addition, data assimilation of ERA-Interim also benefits from quality control that draws on experience from ERA-40 and JRA-25, variational bias correction of satellite radiance data, and more extensive use of radiances with an improved fast radiative transfer model.
ERA-Interim uses sets of observations and boundary forcing fields acquired for ERA-40 through 2001, and from ECMWF operations thereafter. Noteworthy exceptions include new ERS (European Remote Sensing Satellite) altimeter wave heights, EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) reprocessed winds and clear-sky radiances, GOME (Global Ozone Monitoring Experiment) ozone data from the Rutherford Appleton Laboratory, and CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment), and COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS radio occultation measurements processed and archived by UCAR (University Corporation for Atmospheric Research).
NCAR's Data Support Section (DSS) is performing and supplying a grid transformed version of ERA-Interim, in which variables originally represented as spectral coefficients or archived on a reduced Gaussian grid are transformed to a regular 512 longitude by 256 latitude N128 Gaussian grid. In addition, DSS is also computing horizontal winds (u-component, v-component) from spectral vorticity and divergence where these are available. Processing of analysis groups and the surface forecast has been completed for January 1979 through December 2012 (inclusive), or at least 34 years, and will continue as ERA-Interim becomes available thereafter. Data is currently available via NCAR's High Performance Storage System (HPSS), or by delayed mode request which transfers files from the HPSS to our web server for internet download, or via direct internet download, or NCAR's GLADE file system.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents the results of the experimentation of a method for evaluating semantic similarity between concepts in a taxonomy. The method is based on the information-theoretic approach and allows senses of concepts in a given context to be considered. Relevance of senses is calculated in terms of semantic relatedness with the compared concepts. In a previous work [9], the adopted semantic relatedness method was the one described in [10], while in this work we also adopted the ones described in [11], [12], [13], [14], [15], and [16].
We applied our proposal by extending 7 methods for computing semantic similarity in a taxonomy, selected from the literature. The methods considered in the experiment are referred to as R[2], W&P[3], L[4], J&C[5], P&S[6], A[7], and A&M[8]
The experiment was run on the well-known Miller and Charles benchmark dataset [1] for assessing semantic similarity.
The results are organized in seven folders, each with the results related to one of the above semantic relatedness methods. In each folder there is a set of files, each referring to one pair of the Miller and Charles dataset. In fact, for each pair of concepts, all the 28 pairs are considered as possible different contexts.
REFERENCES [1] Miller G.A., Charles W.G. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1). [2] Resnik P. 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Int. Joint Conf. on Artificial Intelligence, Montreal. [3] Wu Z., Palmer M. 1994. Verb semantics and lexical selection. 32nd Annual Meeting of the Associations for Computational Linguistics. [4] Lin D. 1998. An Information-Theoretic Definition of Similarity. Int. Conf. on Machine Learning. [5] Jiang J.J., Conrath D.W. 1997. Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Inter. Conf. Research on Computational Linguistics. [6] Pirrò G. 2009. A Semantic Similarity Metric Combining Features and Intrinsic Information Content. Data Knowl. Eng, 68(11). [7] Adhikari A., Dutta B., Dutta A., Mondal D., Singh S. 2018. An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology. J. Assoc. Inf. Sci. Technol. 69(8). [8] Adhikari A., Singh S., Mondal D., Dutta B., Dutta A. 2016. A Novel Information Theoretic Framework for Finding Semantic Similarity in WordNet. CoRR, arXiv:1607.05422, abs/1607.05422. [9] Formica A., Taglino F. 2021. An Enriched Information-Theoretic Definition of Semantic Similarity in a Taxonomy. IEEE Access, vol. 9. [10] Information Content-based approach [Schuhmacher and Ponzetto, 2014]. [11] Linked Data Semantic Distance (LDSD) [Passant, 2010]. [12] Wikipedia Link-based Measure (WLM ) [Witten and Milne, 2008]; [13] Linked Open Data Description Overlap-based approach (LODDO) [Zhou et al. 2012] [14] Exclusivity-based [Hulpuş et al 2015] [15] ASRMP [El Vaigh et al. 2020] [16] LDSDGN [Piao and Breslin, 2016]