36 datasets found
  1. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  2. a

    Race by Age Groups (B01001A-I)

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Sep 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Race by Age Groups (B01001A-I) [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::race-by-age-groups-b01001a-i
    Explore at:
    Dataset updated
    Sep 7, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) B01001A-I sex by age by race - data is grouped into three age group categories for each race, under 18, 18-64 and 65 and older. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.Data on total number of people by each race alone and in combination by each census tract has been transposed to support dashboard visualizations.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): B01001Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. S

    Statistical Area 3 Higher Geographies 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Area 3 Higher Geographies 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120974-statistical-area-3-higher-geographies-2025/
    Explore at:
    csv, mapinfo tab, mapinfo mif, geopackage / sqlite, shapefile, dwg, kml, pdf, geodatabaseAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released statistical area 3 boundaries as at 1 January 2025, defined by Stats NZ and concorded to higher geographies. This version contains 929 statistical 3 areas (925 digitised and 4 with empty or null geometries (non-digitised)).

    Statistical area 3 (SA3) is a new output geography, introduced in 2023, that allows aggregations of population data between the SA3geography and territorial authority geography.

    This dataset is the definitive version of statistical area 3 (SA3) boundaries concorded to higher geographies for 2025 as defined by Stats NZ.

    This version contains 929 SA3s. This statistical area 3 higher geographies file is a correspondence, or concordance, which relates SA3s to larger geographic areas or 'higher geographies'.

    The higher geography contained in this concordance is: territorial authority (TA).

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  4. D

    Community Reporting Areas

    • data.seattle.gov
    • catalog.data.gov
    • +2more
    application/rdfxml +5
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Community Reporting Areas [Dataset]. https://data.seattle.gov/dataset/Community-Reporting-Areas/h66v-hiux
    Explore at:
    application/rssxml, csv, tsv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 3, 2025
    Description
    Please Note: Community Reporting Areas (CRA) have been updated to follow the 2020 census tract lines which resulted in minor changes to some boundary conditions. They have also been extended into water areas to allow the assignment of CRAs to overwater housing and businesses. To exclude the water polygons from a map choose the filter, water=0.

    Community reporting areas (CRAs) are designed to address a gap that existed in city geography. The task of reporting citywide information at a "community-like level" across all departments was either not undertaken or it was handled in inconsistent ways across departments.

    The CRA geography provides a "common language" for geographic description of the city for reporting purposes. Therefore, this geography may be used by departments for geographic reporting and tracking purposes, as appropriate. The U.S. Census Bureau census tract geography was chosen as the basis of the CRA geography due to their stability through time and link to widely-used demographic data.

    The following criteria for a CRA geography were defined for this effort:
    • no overlapping areas
    • complete coverage of the city
    • suitable scale to represent neighborhood areas/conditions
    • reasonably stable over time
    • consistent with census geography
    • relatively easy to use in a data context
    • familiar system of common place names
    • respects neighborhood district geography to the extent possible
    The following existing geographies were reviewed during this effort:
    • neighborhood planning areas (DON)
    • neighborhood districts (DON/CNC/Neighborhood District Councils)
    • city sectors/neighborhood plan implementation areas (DON)
    • urban centers/urban villages (DPD)
    • population sub-areas (DPD)
    • Neighborhood Map Atlas (City Clerk)
    • Census tract geography
    • topography
    • various other geographic information sources related to neighborhood areas and common place names
    This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.
  5. u

    U.S. Census Blocks

    • colorado-river-portal.usgs.gov
    • geospatial.gis.cuyahogacounty.gov
    • +8more
    Updated Jun 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://colorado-river-portal.usgs.gov/datasets/fedmaps::u-s-census-blocks-1
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  6. c

    U.S. Census Blocks

    • geospatial.gis.cuyahogacounty.gov
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://geospatial.gis.cuyahogacounty.gov/maps/fedmaps::u-s-census-blocks-1
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  7. f

    Health Insurance 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +2more
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Health Insurance 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/47f55267af1b4e4da60b9433421407cc
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  8. l

    The Australian neighbourhood land-use profile dataset

    • opal.latrobe.edu.au
    • researchdata.edu.au
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dennis Wollersheim; Ali Lakhani (2023). The Australian neighbourhood land-use profile dataset [Dataset]. http://doi.org/10.26181/12864236.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    La Trobe
    Authors
    Dennis Wollersheim; Ali Lakhani
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The land-use profile surrounding a neighbourhood is a determinant of health and associated with socioeconomic outcomes. In Australia, there is no national publicly available dataset detailing the land-use profile surrounding residential neighbourhoods. Using PostGIS a centroid was placed in every Australian Bureau of Statistics (ABS) defined Mesh Block (MB) – the smallest geographical structure in Australian geography which details the category of land-use (i.e. residential, parkland, commercial, industrial etc.) and population. Each MB was assigned a remoteness classification and socioeconomic status, as defined by the ABS. After a buffer based on a radius of 400 metres, 1-kilometre, 2-kilometres, and 5-kilometres was calculated around each centroid, the square metre of, and the percentage of the buffer covered by, each land-use category was calculated. This dataset will support the decisions of urban planners, diverse government departments, researchers and those involved in public and environmental health.

  9. Land Cover Classification (Aerial Imagery)

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +4more
    Updated Sep 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://hub.arcgis.com/content/c1bca075efb145d9a26394b866cd05eb
    Explore at:
    Dataset updated
    Sep 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

  10. S

    Statistical Area 3 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2022). Statistical Area 3 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120967-statistical-area-3-2025/
    Explore at:
    pdf, geodatabase, mapinfo mif, mapinfo tab, csv, shapefile, geopackage / sqlite, dwg, kmlAvailable download formats
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s.

    The SA3 geography aims to meet three purposes:

    1. approximate suburbs in major, large, and medium urban areas,

    2. in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities,

    3. minimise data suppression.

    SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.

    Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.

    Zero or nominal population SA3s

    To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.

    Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.

    Small population island SA2s are included in their adjacent land-based SA3.

    Island SA2s outside territorial authority or region are the same in the SA3 geography.

    Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.

    Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.

    Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.

    The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):

    70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.

    SA3 numbering and naming

    Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).

    SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  11. ACS Median Household Income Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +11more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. K

    NZ Populated Places - Polygons

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Jun 16, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Scott (2011). NZ Populated Places - Polygons [Dataset]. https://koordinates.com/layer/3658-nz-populated-places-polygons/
    Explore at:
    kml, csv, dwg, mapinfo tab, pdf, geodatabase, shapefile, mapinfo mif, geopackage / sqliteAvailable download formats
    Dataset updated
    Jun 16, 2011
    Authors
    Peter Scott
    Area covered
    Description

    ps-places-metadata-v1.01

    SUMMARY

    This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.

    RATIONALE

    The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated

    METHODOLOGY

    This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion: - all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted. - Then many additional points were added from a statnz meshblock density analysis.
    - Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.

    Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.

    Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.

    Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.

    Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.

    Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:

    a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south

    Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.

    Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:

    • attempts to represent the present (2011) subjective 'center' of each place as defined by its commercial/retail center ie. mainstreets where they exist, any kind of central retail cluster, even a single shop in very small places.
    • the coordinate is almost always at the junction of two or more roads.
    • most of the time the coordinate is at or near the centroid of the poi cluster
    • failing any significant retail presence, the coordinate tends to be placed near the main road junction to the community.
    • when the above criteria fail to yield a definitive answer, the final criteria involves the centroids of: . the urban polygons . the clusters of building footprints/locations.

    To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.

    The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.

    Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:

    1. Not used.
    2. main urban area 30K+
    3. secondary urban area 10k-30K
    4. minor urban area 1k-10k
    5. rural center 300-1K
    6. village -300

    Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.

    No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.

    PROJECTION

    Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.

    ATTRIBUTES

    Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code

    Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer

    LICENSE

    Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.

    Peter Scott 16/6/2011

    v1.01 minor spelling and grammar edits 17/6/11

  13. a

    Population 2021 (all geographies, statewide)

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Population 2021 (all geographies, statewide) [Dataset]. https://hub.arcgis.com/maps/e6d7f80e712544b5a06b47047ca6d02a
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  14. TIGER/Line Shapefile, 2020, Nation, U.S., Core Based Statistical Areas...

    • catalog.data.gov
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2020, Nation, U.S., Core Based Statistical Areas (CBSA) [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-nation-u-s-core-based-statistical-areas-cbsa
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.

  15. S

    Meshblock 2024

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2023). Meshblock 2024 [Dataset]. https://datafinder.stats.govt.nz/layer/115225-meshblock-2024/
    Explore at:
    dwg, geodatabase, geopackage / sqlite, pdf, shapefile, mapinfo mif, csv, kml, mapinfo tabAvailable download formats
    Dataset updated
    Nov 27, 2023
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset is the definitive of the annually released meshblock boundaries as at 1 January 2024 as defined by Stats NZ. This version contains 57,539 meshblocks, including 16 with empty or null geometries (non-digitised meshblocks).

    Stats NZ maintains an annual meshblock pattern for collecting and producing statistical data. This allows data to be compared over time.

    A meshblock is the smallest geographic unit for which statistical data is collected and processed by Stats NZ. A meshblock is a defined geographic area, which can vary in size from part of a city block to a large area of rural land. The optimal size for a meshblock is 30–60 dwellings (containing approximately 60–120 residents).

    Each meshblock borders on another to form a network covering all of New Zealand, including coasts and inlets and extending out to the 200-mile economic zone (EEZ) and is digitised to the 12-mile (19.3km) limit. Meshblocks are added together to build up larger geographic areas such as statistical area 1 (SA1), statistical area 2 (SA2), statistical area 3 (SA3), and urban rural (UR). They are also used to define electoral districts, territorial authorities, and regional councils.

    Meshblock boundaries generally follow road centrelines, cadastral property boundaries, or topographical features such as rivers. Expanses of water in the form of lakes and inlets are defined separately from land.

    Meshblock maintenance

    Meshblock boundaries are amended by:

    1. Splitting – subdividing a meshblock into two or more meshblocks.
    2. Nudging – shifting a boundary to a more appropriate position.

    Reasons for meshblock splits and nudges can include:

    · to maintain meshblock criteria rules.

    · to improve the size balance of meshblocks in areas where there has been population growth

    · to maintain alignment to cadastre and other geographic features.

    · Stats NZ requests for boundary changes so that statistical geography boundaries can be moved

    · external requests for boundary changes so that administrative or electoral boundaries can be moved

    · to separate land and water. Mainland, inland water, islands, inlets, and oceanic are defined separately

    Meshblock changes are made throughout the year. A major release is made at 1 January each year with ad hoc releases available to users at other times.

    While meshblock boundaries are continually under review, 'freezes' on changes to the boundaries are applied periodically. Such 'freezes' are imposed at the time of population censuses and during periods of intense electoral activity, for example, prior and during general and local body elections.

    Meshblock numbering

    Meshblocks are not named and have seven-digit codes.

    When meshblocks are split, each new meshblock is given a new code. The original meshblock codes no longer exist within that version and future versions of the meshblock classification. Meshblock codes do not change when a meshblock boundary is nudged.

    Meshblocks that existed prior to 2015 and have not changed are numbered from 0000100 to 3210003. Meshblocks created from 2015 onwards are numbered from 4000000.

    Digitised and non-digitised meshblocks

    The digital geographic boundaries are defined and maintained by Stats NZ.

    Meshblocks cover the land area of New Zealand, the water area to the 12mile limit, the Chatham Islands, Kermadec Islands, sub-Antarctic islands, offshore oil rigs, and Ross Dependency. The following 16 meshblocks are not held in digitised form.

    Meshblock / Location (statistical area 2 name)

    • 0016901 / Oceanic Kermadec Islands
    • 0016902 / Kermadec Islands
    • 1588000 / Oceanic Oil Rig Taranaki
    • 3166401 / Oceanic Campbell Island
    • 3166402 / Campbell Island
    • 3166600 / Oceanic Oil Rig Southland
    • 3166710 / Oceanic Auckland Islands
    • 3166711 / Auckland Islands
    • 3195000 / Ross Dependency
    • 3196001 / New Zealand Economic Zone
    • 3196002 / Oceanic Bounty Islands
    • 3196003 / Bounty Islands
    • 3196004 / Oceanic Snares Islands
    • 3196005 / Snares Island
    • 3196006 / Oceanic Antipodes Islands
    • 3196007 / Antipodes Island

    For more information please refer to the Statistical standard for geographic areas 2023.

    High definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Digital Data

    Digital boundary data became freely available on 1 July 2007.

  16. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  17. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  18. Medical Service Study Areas

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.ca.gov/dataset/medical-service-study-areas
    Explore at:
    arcgis geoservices rest api, geojson, kml, zip, html, csvAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  19. b

    Freight Analysis Framework (FAF5) Regions

    • geodata.bts.gov
    • catalog.data.gov
    Updated Jul 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2014). Freight Analysis Framework (FAF5) Regions [Dataset]. https://geodata.bts.gov/datasets/freight-analysis-framework-faf5-regions/about
    Explore at:
    Dataset updated
    Jul 1, 2014
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The Freight Analysis Framework (FAF5) - Regions dataset was created from 2017 base year data and was published on April 11, 2022 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The 2017 Commodity Flow Survey (CFS) contains 132 zones for U.S. domestic regions, which are directly carried over to the geography definitions for the FAF (Version 5) Regions. These geographic areas can be classified as one of the following three types: (1) Metropolitan Area (MA): The state part of a selected metropolitan statistical area (MSA) or combined statistical area (CSA). (2) The Remainder of State (ROS): The portion of a state containing the counties that are not included in the MA type CFS Areas defined above. (3) Whole State: An entire state where no MA type CFS Areas are defined within the state.

  20. ACS Internet Connectivity Variables - Boundaries

    • hub.arcgis.com
    • opendata.suffolkcountyny.gov
    • +8more
    Updated Dec 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Connectivity Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/4f43b3bb1e274795b14e5da42dea95d5
    Explore at:
    Dataset updated
    Dec 10, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and type of internet subscription. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households with no internet connection. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28001, B28002 (Not all lines of ACS table B28002 are available in this feature layer)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
Organization logo

Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 12, 2022
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Tibetan Plateau
Description

Introduction

Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

Data processing

We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

Version

Version 2022.1.

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

Citation

Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

Contacts

Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

Institution: Kunming Institute of Botany, Chinese Academy of Sciences

Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

Copyright

This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

Search
Clear search
Close search
Google apps
Main menu