15 datasets found
  1. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://hiu.state.gov/data/cartographic_guidance_bulletins/ Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: - International Boundaries (Rank 1); - Other Lines of International Separation (Rank 2); and - Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the feature—either line geometry or attribute—but it is still conceptually the same feature. The “PARENTID” field

  2. Solar Footprints in California

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Solar Footprints in California [Dataset]. https://catalog.data.gov/dataset/solar-footprints-in-california-6251a
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Area covered
    California
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  3. n

    1:100,000-scale Digital Line Graphs (DLG) from the U.S. Geological Survey

    • cmr.earthdata.nasa.gov
    • data.nasa.gov
    • +3more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). 1:100,000-scale Digital Line Graphs (DLG) from the U.S. Geological Survey [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566434-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jun 19, 1987 - Present
    Area covered
    Description

    Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1: 100,000 are used. Intermediate-scale DLG's are sold in five categories: (1) Public Land Survey System; (2) boundaries (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG - Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.

  4. Street Network Database SND

    • s.cnmilf.com
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Street Network Database SND [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/street-network-database-snd-1712b
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    https://arcgis.com/
    Description

    The pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network _location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address _location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear _location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection _location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of _location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event _location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.

  5. n

    Watershed Boundary HUC 10

    • opdgig.dos.ny.gov
    • new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com
    Updated Nov 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2022). Watershed Boundary HUC 10 [Dataset]. https://opdgig.dos.ny.gov/datasets/watershed-boundary-huc-10/about
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and cataloging units. The hydrologic units are arranged or nested within each other, from the largest geographic area (regions) to the smallest geographic area (cataloging units). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system. The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.View Dataset on the Gateway

  6. b

    Time Zones

    • geodata.bts.gov
    • catalog.data.gov
    Updated Jul 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2019). Time Zones [Dataset]. https://geodata.bts.gov/datasets/usdot::time-zones/about
    Explore at:
    Dataset updated
    Jul 1, 2019
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The Time Zones dataset was compiled on October 04, 2019 and was updated January 05, 2023 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This layer is a digital representation of the geographic boundaries of the nine time zones that cover the United States and its territories (the Atlantic, Eastern, Central, Mountain, Pacific, Alaska, Hawaii–Aleutian, Samoa, and Chamorro time zones). The U.S. Department of Transportation (DOT) oversees the Nation's time zones and the uniform observance of Daylight-Saving Time. The oversight of time zones was assigned to DOT due to the importance of time coordination for transportation related activities. The time zones were established by the Standard Time Act of 1918 and amended by the Uniform Time Act of 1966. Time zones in the U.S. are defined in the U.S. Code, Title 15, Chapter 6, Subchapter IX - Standard Time. The time zone boundaries are defined in the Code of Federal Regulations (CFR), Title 49, Subtitle A, Part 71 - Standard Time Zone Boundaries. Segments used to compile the geospatial layer were derived from the CFR’s time zone descriptions (https://www.ecfr.gov/current/title-49/subtitle-A/part-71). Descriptions consist of segments referencing administrative boundaries, infrastructure, natural features, and geodesic lines. These segments are contained in various data layers in the National Geospatial Data Asset (NGDA) portfolio, the federal government’s authoritative geospatial data repository. Referenced segments were extracted from their NGDA and then merged to form continuous boundaries. In instances where there were multiple scales for a given dataset, the largest scale or most detailed layer was used. The standard time of the Atlantic zone is the Coordinated Universal Time (UTC) minus 4 hours; Eastern zone is UTC minus 5 hours; Central zone is UTC minus 6 hours; Mountain zone is UTC minus 7 hours; Pacific zone is UTC minus 8 hours; Alaska zone is UTC minus 9 hours; Hawaii–Aleutian zone is UTC minus 10 hours; Samoa zone is UTC minus 11 hours; and Chamorro zone is UTC plus 10 hours. For more information, please visit: https://doi.org/10.21949/1519143.

  7. m

    Hunter Dam locations

    • demo.dev.magda.io
    • researchdata.edu.au
    • +2more
    zip
    Updated Dec 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Hunter Dam locations [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-c4b84910-f687-4d31-b585-60222c283cb5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The dataset was derived by the Bioregional Assessment Programme. This dataset was derived from the GEODATA TOPO 250K Series 3 dataset. You can find a link to the parent dataset in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived. Dam (point) locations of dam walls for the Hunter subregion. Derived from the GA 1:250K topo data "Infrastructure" dataset, DamWalls feature class. Source data line features have …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme. This dataset was derived from the GEODATA TOPO 250K Series 3 dataset. You can find a link to the parent dataset in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived. Dam (point) locations of dam walls for the Hunter subregion. Derived from the GA 1:250K topo data "Infrastructure" dataset, DamWalls feature class. Source data line features have been converted to point features (centroids) for small scale map image display. Dataset History For the Hunter subregion area, Dam locations were sourced from the GA 1:250K topo data "Infrastructure" dataset, DamWalls feature class. Selected source data line features were converted to point features (centroids) using the ArcMap (10.1) FeatureToPoint tool (ArcToolbox:DataMangement/Features). Another field "MapControl" was added to the PAT and attributed as required to facilitate selective display in map images via the Definition Query feature. Dataset Citation Bioregional Assessment Programme (2014) Hunter Dam locations. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/628fa56b-c6c9-44ae-96b0-deb1a2d3327c. Dataset Ancestors Derived From GEODATA TOPO 250K Series 3

  8. c

    High-resolution maps of big sagebrush plant community biomass using...

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). High-resolution maps of big sagebrush plant community biomass using multivariate matching algorithms [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/high-resolution-maps-of-big-sagebrush-plant-community-biomass-using-multivariate-matching-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    These GeoTIFF data were compiled to investigate how a new multivariate matching algorithm transfers simulated plant functional biomass of big sagebrush plant communities from 200 sites to a gridded product with 30-arcsec spatial resolution. Objectives of our study were to (1) describe how climate change will alter the biomass and composition of key plant functional types; (2) quantify the impacts of climate change on future functional type biomass and composition along climatic gradients; (3) identify if and which geographic locations will be relatively unaffected by climate change while others experience large effects; and (4) determine if there is consistency in climate change impacts on plant communities among a representative set of climate scenarios. These data represent geographic patterns in simulated plant functional biomass of big sagebrush plant communities (cheatgrass, perennial forbs, C3 perennial grasses, C4 perennial grasses, perennial grasses, big sagebrush) as across-year averages of under historical ("current"; years 1980-2010) climate and differences ("change") between projected future climates (years 2030-2060 and 2070-2100) derived as medians across 13 Global Climate Models (GCMs) that participated in CMIP5 for representative concentration pathways RCP4.5 and RCP8.5 and historical values. These data were created in 2020 and 2021 for the area of the sagebrush region in the western United States to describe geographic patterns in simulated plant functional biomass of big sagebrush plant communities under historical and projected future climate conditions at a 30-arcsec spatial resolution. These data can be used to confirm the results of the study identified as the ‘Larger Work Citation’ including the high resolution matching of projected declines in big sagebrush, perennial C3 grass and perennial forb biomass in warm, dry sites; no projected change or increases in functional type biomass in cold, moist sites; and widespread projected increases in perennial C4 grasses across sagebrush plant communities in the sagebrush region of the western United States as defined by Palmquist et al. (2021) and within the scope as defined by the study. These data may also be used to evaluate the potential impact of changing climate conditions on geographic patterns in simulated plant functional biomass of big sagebrush plant communities within the scope defined by the study. In particular, these data can be useful for informing the design of long-term landscape conservation efforts to maintain and expand wildlife habitat across the sagebrush biome.

  9. m

    Qld 100k mapsheets - Warwick

    • demo.dev.magda.io
    • data.gov.au
    • +1more
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Qld 100k mapsheets - Warwick [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-2e4acaf5-a291-4fa1-9811-580b41de0bc4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 13, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in the Department of Natural Resources, Mines and Energy Merlin Database. Purpose To display the geology polygons which define the extent of rock units. Dataset History Supplemental_Information: Data captured at 1:40 000 scale. The data set is sourced from the Department's Geoscience and Resources Database (GRDB), a component of the Mineral and Energy Resources Location and Information Network (MERLIN) corporate database.(GRDB), a component of the Mineral and Energy Resources Location and Information Network (MERLIN) corporate database. NOTE: GEOLDATA was in most cases compiled based on Datum AGD66. The map tile coverages so compiled have now been projected to geographics based on Datum GDA94. Consequently the boundaries for these map tiles will not conform to the Latitude and Longitude graticule based on Datum GDA94. Entity_and_Attribute_Information: Detailed_Description: Entity_Type: Entity_Type_Label: 9341_r Entity_Type_Definition: Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. Entity_Type_Definition_Source: The Rock Units Table held in the Department of Natural Resources, Mines and Energy Merlin Database. Attribute: Attribute_Label: FID Attribute_Definition: Internal feature number. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Sequential unique whole numbers that are automatically generated. Beginning_Date_of_Attribute_Values: March 2004 Attribute: Attribute_Label: Shape Attribute_Definition: Feature geometry. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Coordinates defining the features. Attribute: Attribute_Label: KEY Attribute_Definition: Unique polygon identifier and relate item for poygon attributes Attribute: Attribute_Label: ROCK_U_NAM Attribute_Definition: The Map Unit Name of the polygon. In the case of named units it comprises of the standard binomial name. Unnamed subdivisions of named units include the binomial name with a letter symbol as a suffix. Unnamed units are represented by a letter symbol, usually in combination with a map sheet number. Attribute: Attribute_Label: AGE Attribute_Definition: Geological age of unit Attribute: Attribute_Label: LITH_SUMMA Attribute_Definition: Provides a brief description of the map units as they have been described in the course of the project work, or as has appeared on relevant hard copy map legends. Attribute: Attribute_Label: ROCK_U_TYP Attribute_Definition: Provides a means of separating map units, eg for constructing a map reference. This item will contain one of the following: STRAT- Stratigraphic unit, including sedimentary, volcanic and metamorphic rock units. INTRU- Intrusive rock units; COMPST- Compound unit where the polygon includes two or more rock units, either stratigraphic, intrusive or both; COMPST- Compound unit, as above where the dominant or topmost unit is of the STRAT type; COMPIN- Compound unit, as above, where the dominant unit is of the INTRU type; WATER- Water bodies- Large dams, lakes, waterholes. Attribute: Attribute_Label: SEQUENCE_N Attribute_Definition: A numeric field to allow sorting of the rock units in approximate stratigraphic order as they would appear on a map legend. Attribute: Attribute_Label: DOMINANT_R Attribute_Definition: A simplified lithological description to allow generation of thematic maps based on broad rock types. Attribute: Attribute_Label: MAP_SYMBOL Attribute_Definition: Provides an abbreviated label for polygons. Mostly based on the letter symbols as they appear on published maps or the original hard copy compilation sheets. These are not unique across the State, but should be unique within a single map tile, and usually adjacent tiles. Attribute: Attribute_Label: NAME_100K Attribute_Definition: Name of 1:100 000 map sheet coincident with the data extent. Overview_Description: Entity_and_Attribute_Overview: Polygon Attribute information includes Polygon Key, Rock Unit Name, Age, Lithology, Rock Unit Type, Map Symbol and 1:100 000 sheet name. Dataset Citation "Queensland Department of Natural Resources, Mines and Energy" (2014) Qld 100k mapsheets - Warwick. Bioregional Assessment Source Dataset. Viewed 28 September 2017, http://data.bioregionalassessments.gov.au/dataset/3e2fa307-1f06-4873-96d3-5c3e5638894a.

  10. d

    Geomorphic Map Malakoff Diggins State Historic Park, California

    • catalog.data.gov
    • search.dataone.org
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geomorphic Map Malakoff Diggins State Historic Park, California [Dataset]. https://catalog.data.gov/dataset/geomorphic-map-malakoff-diggins-state-historic-park-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 2014 digital elevation model (DEM), a study area boundary, and a geomorphic map. The 2014 DEM was derived from an available aerial LiDAR dataset collected in 2014 by the California Department of Conservation. The geomorphic map was derived for the study area from using a multi-scale spatial analysis. A topographic position index (TPI) was created using focal statistics to compare the elevations across the study area. We calculated a fine-scale TPI using a circular neighborhood with a radius of 25-meters and large-scale TPI using a circular neighborhood with a radius of 100-meters. In the resulting raster positive TPI values are assigned to cells with elevations higher than the surrounding area and negative TPI values are assigned to cells with elevations lower than the surrounding area. The geomorphic map was then created using a nested conditional statement to apply classification thresholds on the basis the fine and large-scale TPI rasters and a slope raster. Ten geomorphic feature classes were defined and the map can be symbolized by feature class. The geomorphic map includes both channel and hillslope features and can be used to assess erosional and depositional processes at the landscape scale.

  11. e

    New Zealand Regional Councils

    • gisinschools.eagle.co.nz
    Updated Nov 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2016). New Zealand Regional Councils [Dataset]. https://gisinschools.eagle.co.nz/items/d8937f1974c748b0a0b7d69306518a0a
    Explore at:
    Dataset updated
    Nov 10, 2016
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    Cook Strait
    Description

    The region is the top tier of local government in New Zealand. There are 16 regions of New Zealand (Part 1 of Schedule 2 of the Local Government Act 2002). Eleven are governed by an elected regional council, while five are governed by territorial authorities (the second tier of local government) who also perform the functions of a regional council and thus are known as unitary authorities. These unitary authorities are Auckland Council, Nelson City Council, Gisborne, Tasman, and Marlborough District Councils. The Chatham Islands Council also perform some of the functions of a regional council, but is not strictly a unitary authority. Unitary authorities act as regional councils for the purposes of a wide range of Acts and regulations. Regional council areas are based on water catchment areas. Regional councils are responsible for the administration of many environmental and public transport matters.Regional Councils were established in 1989 after the abolition of the 22 local government regions. The local government act 2002, requires the boundaries of regions to confirm as far as possible to one or more water catchments. When determining regional boundaries, the local Government commission gave consideration to regional communities of interest when selecting water catchments to included in a region. It also considered factors such as natural resource management, land use planning and environmental matters. Some regional boundaries are conterminous with territorial authority boundaries but there are many exceptions. An example is Taupo District, which is split between four regions, although most of its area falls within the Waikato Region. Where territorial local authorities straddle regional council boundaries, the affected area have been statistically defined in complete area units. Generally regional councils contain complete territorial authorities. The unitary authority of the Auckland Council was formed in 2010, under the Local Government (Tamaki Makarau Reorganisation) Act 2009, replacing the Auckland Regional Council and seven territorial authorities.The seaward boundary of any costal regional council is the twelve mile New Zealand territorial limit. Regional councils are defined at meshblock and area unit level.Regional Councils included in the 2013 digital pattern are:Regional Council CodeRegional Council Name01Northland Region02Auckland Region03Waikato Region04Bay of Plenty Region05Gisborne Region06Hawke's Bay Region07Taranaki Region08Manawatu-Wanganui Region09Wellington Region12West Coast Region13Canterbury Region14Otago Region15Southland Region16Tasman Region17Nelson Region18Marlborough Region99Area Outside RegionAs at 1stJuly 2007, Digital Boundary data became freely available.Deriving of Output FilesThe original vertices delineating the meshblock boundary pattern were digitised in 1991 from 1:5,000 scale urban maps and 1:50,000 scale rural maps. The magnitude of error of the original digital points would have been in the range of +/- 10 metres in urban areas and +/- 25 metres in rural areas. Where meshblock boundaries coincide with cadastral boundaries the magnitude of error will be within the range of 1–5 metres in urban areas and 5 - 20 metres in rural areas. This being the estimated magnitude of error of Landonline.The creation of high definition and generalised meshblock boundaries for the 2013 digital pattern and the dissolving of these meshblocks into other geographies/boundaries were completed within Statistics New Zealand using ESRI's ArcGIS desktop suite and the Data Interoperability extension with the following process: 1. Import data and all attribute fields into an ESRI File Geodatabase from LINZ as a shapefile2. Run geometry checks and repairs.3. Run Topology Checks on all data (Must Not Have Gaps, Must Not Overlap), detailed below.4. Generalise the meshblock layers to a 1m tolerance to create generalised dataset. 5. Clip the high definition and generalised meshblock layers to the coastline using land water codes.6. Dissolve all four meshblock datasets (clipped and unclipped, for both generalised and high definition versions) to higher geographies to create the following output data layers: Area Unit, Territorial Authorities, Regional Council, Urban Areas, Community Boards, Territorial Authority Subdivisions, Wards Constituencies and Maori Constituencies for the four datasets. 7. Complete a frequency analysis to determine that each code only has a single record.8. Re-run topology checks for overlaps and gaps.9. Export all created datasets into MapInfo and Shapefile format using the Data Interoperability extension to create 3 output formats for each file. 10. Quality Assurance and rechecking of delivery files.The High Definition version is similar to how the layer exists in Landonline with a couple of changes to fix topology errors identified in topology checking. The following quality checks and steps were applied to the meshblock pattern:Translation of ESRI Shapefiles to ESRI geodatabase datasetThe meshblock dataset was imported into the ESRI File Geodatabase format, required to run the ESRI topology checks. Topology rules were set for each of the layers. Topology ChecksA tolerance of 0.1 cm was applied to the data, which meant that the topology engine validating the data saw any vertex closer than this distance as the same location. A default topology rule of “Must Be Larger than Cluster Tolerance” is applied to all data – this would highlight where any features with a width less than 0.1cm exist. No errors were found for this rule.Three additional topology rules were applied specifically within each of the layers in the ESRI geodatabase – namely “Must Not Overlap”, “Must Not Have Gaps” and “"Area Boundary Must Be Covered By Boundary Of (Meshblock)”. These check that a layer forms a continuous coverage over a surface, that any given point on that surface is only assigned to a single category, and that the dissolved boundaries are identical to the parent meshblock boundaries.Topology Checks Results: There were no errors in either the gap or overlap checks.GeneralisingTo create the generalised Meshblock layer the “Simplify Polygon” geoprocessing tool was used in ArcGIS, with the following parameters:Simplification Algorithm: POINT_REMOVEMaximum Allowable Offset: 1 metreMinimum Area: 1 square metreHandling Topological Errors: RESOLVE_ERRORSClipping of Layers to CoastlineThe processed feature class was then clipped to the coastline. The coastline was defined as features within the supplied Land2013 with codes and descriptions as follows:11- Island – Included12- Mainland – Included21- Inland Water – Included22- Inlet – Excluded23- Oceanic –Excluded33- Other – Included.Features were clipped using the Data Interoperability extension, attribute filter tool. The attribute filter was used on both the generalised and high definition meshblock datasets creating four meshblock layers. Each meshblock dataset also contained all higher geographies and land-water data as attributes. Note: Meshblock 0017001 which is classified as island, was excluded from the clipped meshblock layers, as most of this meshblock is oceanic. Dissolve meshblocks to higher geographiesStatistics New Zealand then dissolved the ESRI meshblock feature classes to the higher geographies, for both the full and clipped dataset, generalised and high definition datasets. To dissolve the higher geographies, a model was built using the dissolver, aggregator and sorter tools, with each output set to include geography code and names within the Data Interoperability extension. Export to MapInfo Format and ShapfilesThe data was exported to MapInfo and Shapefile format using ESRI's Data Interoperability extension Translation tool. Quality Assurance and rechecking of delivery filesThe feature counts of all files were checked to ensure all layers had the correct number of features. This included checking that all multipart features had translated correctly in the new file.

  12. a

    VT Service - Raster Tile Layer - Topographically Defined Floodplains - Lake...

    • hub.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated May 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2022). VT Service - Raster Tile Layer - Topographically Defined Floodplains - Lake Champlain Basin (probHAND 2022) [Dataset]. https://hub.arcgis.com/maps/b05be7a01d56484593a2137c659bcb92
    Explore at:
    Dataset updated
    May 17, 2022
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    (Link to Metadata) (Link to data release page) This Topographically-defined Floodplain dataset is a high-resolution raster that communicates the extent and frequency of flood inundation along rivers that drain 2 square-miles or more in the Lake Champlain Basin, Vermont. This dataset represents the lateral extents of flooding for storms of recurrence intervals ranging from 2 to 500 years. It includes eight modeled storm sizes (2, 5, 10, 25, 50, 100, 200, and 500 year peak floods) informed by regional regression analyses built from Vermont watershed characteristics and the historical hydrology of the region. The Floodplain dataset represents the flood inundation extents as they are topographically defined at the time of the most recent LiDAR data collection, which varies from 2013 to 2017.Because of simplifications made to represent hydraulic processes in the modeling approach and uncertainties and errors in large scale model parameterization (e.g., flood peak discharges at ungauged reaches, roughness values), there are limitations to its uses.This floodplain model is intended for planning and research use by government, academic, commercial and non-governmental agencies; it is NOT a substitute for FEMA Flood Insurance Rate Maps and is not intended for regulatory use.

  13. a

    National Forest Inventory Scotland 2012

    • hub.arcgis.com
    • dtechtive.com
    Updated Oct 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mapping.geodata_forestry (2018). National Forest Inventory Scotland 2012 [Dataset]. https://hub.arcgis.com/documents/0f17a542482d47d69752714ce657e155
    Explore at:
    Dataset updated
    Oct 2, 2018
    Dataset authored and provided by
    mapping.geodata_forestry
    Area covered
    Scotland
    Description

    The NFI definition of woodland is a minimum area of 0.5 hectares under stands of trees with, or with the potential to achieve, tree crown cover of more than 20% of the ground. Areas of young trees, which have the potential to achieve a canopy cover of more than 20%, will also be interpreted as woodland and mapped. The minimum width for woodland is 20 m, although where woodlands are connected by a narrow neck of woodland less than 20 m wide, the break may be disregarded if less than 20 m in extent. Intervening land classes such as Roads - all 'tarmac' roads should be excluded from the woodland area, but internal forest tracks, farmers tracks, rides etc. will be included as part of the woodland if< 20m wide. Rivers - where the gap in woodland is 20m then rivers will be excluded from the woodland area.Power lines etc. - where the gap in woodland is 20m then power lines will be excluded from the woodland area.Railways - all normal gauge railways should be excluded from woodland Scrubby vegetation" is included within this survey where low woody growth seems to dominate a likely woodland site. The definition of an open area is any open area that is 20m wide and 0.5 ha in extent and is completely surrounded by woodland.The woodland boundaries have been interpreted from colour aerial orthophotographic imagery. For the base map, photographic images aimed to be no older than 3 years at the time of mapping (i.e. areas mapped in 2007 would be based on photographs that were ideally taken no earlier than 2004). As the map is be the basis for a longer rolling programme of sample field surveys it has been necessary to develop procedures to update the map to the date of the field survey, currently 2011, for the purpose of reporting on the current phase.The map is continually updated on an annual basis. These updates will are achieved by a combination of remote sensing and updated aerial imagery analysis for changes in the woodland structure and with reference to available new planting information from grant schemes and the FE sub-compartment database. Ordnance Survey MasterMap® (OSMM) features have been used as a reference for capturing the woodland boundaries. OSMM is the most up to date large-scale digital map of GB providing a seamless database for 1:1250, 1:2500 and 1:10000 survey data. All woodland (both urban and rural, regardless of ownership) which is 0.5ha or greater in extent, with the exception of Assumed woodland or Low density areas that can be 0.1ha or greater in extend, as been mapped Woodland that is less than 0.5ha in extent will not be described within the dataset but will be included in a separate sample survey of small woodland and tree features. The primary objective is to create a new digital map of all woodland in Great Britain using O.S.MasterMap features as boundaries where appropriate. The map shows the extent of all woodland of 0.5 ha.Woodland categories are defined by IFT (Interpreted Forest Type) values. Detailed Woodland categories are: BroadleavedConiferFelledGround Prepared for New PlantingMixed - predominantly BroadleavedMixed - predominantly ConiferYoung TreesCoppiceCoppice with StandardsShrub LandUncertainCloud or ShadowLow DensityAssumed woodlandFailedWindthrow/WindblowNon woodland categories are defined by the IOA (Interpreted Open Area) values. Detailed Non woodland categories are:Agriculture landBare areaGrassOpen waterOther vegetationPower lineQuarryRiverRoadUrbanWindfarm

  14. d

    California State Waters Map Series--Offshore of Salt Point Web Services

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Salt Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-salt-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Salt Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Salt Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  15. d

    Geomorphic Mapping for the lower Middle Fork Willamette River, Oregon in...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geomorphic Mapping for the lower Middle Fork Willamette River, Oregon in 2018 and 2020 [Dataset]. https://catalog.data.gov/dataset/geomorphic-mapping-for-the-lower-middle-fork-willamette-river-oregon-in-2018-and-2020
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Willamette River, Middle Fork Willamette River, Oregon
    Description

    Since 2008, large-scale restoration programs have been implemented along the Willamette River, Oregon, to address historical losses of floodplain habitats for native fish. For much of the Willamette River floodplain, direct enhancement of floodplain habitats through restoration activities is needed because the underlying hydrologic, geomorphic, and vegetation processes that historically created and sustained complex floodplain habitats have been fundamentally altered by dam construction, bank protection, large wood removal, land conversion, and other influences (for example, Hulse and others, 2002; Wallick and others, 2013). For gravel-bed rivers like the Willamette River, planimetric changes (defined here as geomorphic changes related to horizontal adjustments independent of elevation and that can be observed using aerial photographs and other two-dimensional maps) include changes in channel position, gravel bars, and side channels. Restoration activities likely to cause planimetric changes in channel features include revetment removal, construction of off-channels features, modifications to floodplain topography, and gravel pit enhancements. Repeat planimetric mapping, provides a basis for quantifying channel changes and relating those changes to restoration projects or other natural or anthropogenic influences affecting geomorphic processes. Repeat mapping also can be used to quantify planimetric changes resulting directly from implementation of restoration projects, as well as subsequent geomorphic evolution of those features. In this study, repeat geomorphic mapping was completed for 2018 and 2020 along the lower 6.8 kilometers of the Middle Fork Willamette River (river mile 187.5 to 191.5 on USGS topographic maps) to support an assessment of geomorphic changes resulting from restoration activities implemented from 2014 to 2017. These datasets can be combined with previously published mapping (Keith and Gordon, 2019) in which the lower 11.6 km of Fall Creek and lower 27.3 km of Middle Fork Willamette were mapped for six periods (1936, 2005, 2011, 2012, 2014, and 2016). The 2018 and 2020 mapping was completed in the vicinity of large-scale restoration projects at the Willamette Confluence Preserve where gravel ponds and revetments were modified to improve floodplain habitats. The repeat mapping datasets include GIS layers defining the landforms and water features, as well as the types of cover and vegetation density on landforms, and types of secondary channel features mapped throughout the active channel. For this study, the active channel was defined as area typically inundated during annual high flows and includes the low-flow channel as well as side channels and gravel bars. Floodplain islands that have a substantial area surrounded by active channel features in the mapping were also included.

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
Organization logo

Large Scale International Boundaries

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 28, 2025
Dataset provided by
United States Department of Statehttp://state.gov/
Description

Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://hiu.state.gov/data/cartographic_guidance_bulletins/ Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: - International Boundaries (Rank 1); - Other Lines of International Separation (Rank 2); and - Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the feature—either line geometry or attribute—but it is still conceptually the same feature. The “PARENTID” field

Search
Clear search
Close search
Google apps
Main menu