100+ datasets found
  1. Dictionary of Algorithms and Data Structures (DADS)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2025). Dictionary of Algorithms and Data Structures (DADS) [Dataset]. https://catalog.data.gov/dataset/dictionary-of-algorithms-and-data-structures-dads-910e0
    Explore at:
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.

  2. Basic Functions of the Numerical Structure of Scientific Data

    • zenodo.org
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Ivanovich Khripkov; Alexander Ivanovich Khripkov (2025). Basic Functions of the Numerical Structure of Scientific Data [Dataset]. http://doi.org/10.5281/zenodo.8137903
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Ivanovich Khripkov; Alexander Ivanovich Khripkov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Thematic meanings of numerical definitions of subject data in various fields of science lead to manipulation of digital codes of known physical, chemical, biological, genetic and other quantities. In principle, each scientific justification contains, to one degree or another, a quantitative, qualitative characteristic of comparison or content. Thus, the language of natural numbers, like mathematical operations, can be accompanied by any definition in any terminology. In this text, the author does not use well-known terms related to the main scientific areas. In this text, the numbers speak for themselves. Any combination of orders or compositions of complex numerical structures presented in this text has its own logical meaning. Any paradox of numerical combinations is an algorithm of real values of numbers.

  3. TxDOT Number of Through Lanes Data Dictionary

    • hub.arcgis.com
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Texas Department of Transportation (2025). TxDOT Number of Through Lanes Data Dictionary [Dataset]. https://hub.arcgis.com/documents/d6edcfa4df0b4add8d1d5671a620aa68
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Texas Department of Transportationhttp://txdot.gov/
    Description

    Programmatically generated Data Dictionary document detailing the TxDOT Number of Through Lanes service.

        The PDF contains service metadata and a complete list of data fields.
        For any questions or issues related to the document, please contact the data owner of the service identified in the PDF and Credits of this portal item.
    
    
      Related Links
      TxDOT Number of Through Lanes Service URL
      TxDOT Number of Through Lanes Portal Item
    
  4. Medical Service Study Area Data Dictionary

    • healthdata.gov
    • data.chhs.ca.gov
    • +3more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Area Data Dictionary [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Area-Data-Dictionary/p6ed-z4rw
    Explore at:
    xml, application/rdfxml, csv, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    Field NameData TypeDescription
    StatefpNumberUS Census Bureau unique identifier of the state
    CountyfpNumberUS Census Bureau unique identifier of the county
    CountynmTextCounty name
    TractceNumberUS Census Bureau unique identifier of the census tract
    GeoidNumberUS Census Bureau unique identifier of the state + county + census tract
    AlandNumberUS Census Bureau defined land area of the census tract
    AwaterNumberUS Census Bureau defined water area of the census tract
    AsqmiNumberArea calculated in square miles from the Aland
    MSSAidTextID of the Medical Service Study Area (MSSA) the census tract belongs to
    MSSAnmTextName of the Medical Service Study Area (MSSA) the census tract belongs to
    DefinitionTextType of MSSA, possible values are urban, rural and frontier.
    TotalPovPopNumberUS Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701
  5. o

    Data Sets for "The tensor t-function: a definition for functions of...

    • explore.openaire.eu
    Updated Nov 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kathryn Lund (2019). Data Sets for "The tensor t-function: a definition for functions of third-order tensors" [Dataset]. http://doi.org/10.5281/zenodo.6420777
    Explore at:
    Dataset updated
    Nov 22, 2019
    Authors
    Kathryn Lund
    Description

    MATLAB data sets used for numerical tests in K. Lund, The tensor t-function: a definition for functions of third-order tensors, Numerical Linear Algebra with Applications, 27 (3), e2288, 2020. https://doi.org/10.1002/nla.2288 The data and associated code were originally published on GitLab (https://gitlab.com/katlund/bfomfom-main), ca. 2019. The code (drivers, test scripts, etc.) can still be found in the bfomfom repository.

  6. f

    Data from: INTEGRAL BY WAY OF INFINITE PARTITIONS

    • figshare.com
    pdf
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiago s. dos Reis (2016). INTEGRAL BY WAY OF INFINITE PARTITIONS [Dataset]. http://doi.org/10.6084/m9.figshare.1133791.v4
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Tiago s. dos Reis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We propose a new form of integral which arises from infinite partitions. We use upper and lower series instead of upper and lower Darboux finite sums. We show that every Riemann integrable function, both proper and improper, is integrable in the sense proposed here and both integrals have the same value. We show that the Riemann integral and our integral are equivalent for bounded functions in bounded intervals.

  7. f

    What is your definition of Big Data? Researchers’ understanding of the...

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maddalena Favaretto; Eva De Clercq; Christophe Olivier Schneble; Bernice Simone Elger (2023). What is your definition of Big Data? Researchers’ understanding of the phenomenon of the decade [Dataset]. http://doi.org/10.1371/journal.pone.0228987
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Maddalena Favaretto; Eva De Clercq; Christophe Olivier Schneble; Bernice Simone Elger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The term Big Data is commonly used to describe a range of different concepts: from the collection and aggregation of vast amounts of data, to a plethora of advanced digital techniques designed to reveal patterns related to human behavior. In spite of its widespread use, the term is still loaded with conceptual vagueness. The aim of this study is to examine the understanding of the meaning of Big Data from the perspectives of researchers in the fields of psychology and sociology in order to examine whether researchers consider currently existing definitions to be adequate and investigate if a standard discipline centric definition is possible.MethodsThirty-nine interviews were performed with Swiss and American researchers involved in Big Data research in relevant fields. The interviews were analyzed using thematic coding.ResultsNo univocal definition of Big Data was found among the respondents and many participants admitted uncertainty towards giving a definition of Big Data. A few participants described Big Data with the traditional “Vs” definition—although they could not agree on the number of Vs. However, most of the researchers preferred a more practical definition, linking it to processes such as data collection and data processing.ConclusionThe study identified an overall uncertainty or uneasiness among researchers towards the use of the term Big Data which might derive from the tendency to recognize Big Data as a shifting and evolving cultural phenomenon. Moreover, the currently enacted use of the term as a hyped-up buzzword might further aggravate the conceptual vagueness of Big Data.

  8. D

    Third Generation Simulation Data (TGSIM) I-90/I-94 Moving Trajectories

    • data.transportation.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Nov 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Third Generation Simulation Data (TGSIM) I-90/I-94 Moving Trajectories [Dataset]. https://data.transportation.gov/Automobiles/Third-Generation-Simulation-Data-TGSIM-I-90-I-94-M/6a6e-vfvi
    Explore at:
    application/rssxml, json, xml, application/rdfxml, csv, tsvAvailable download formats
    Dataset updated
    Nov 4, 2024
    Area covered
    Interstate 90
    Description

    The main dataset is a 130 MB file of trajectory data (I90_94_moving_final.csv) that contains position, speed, and acceleration data for small and large automated (L2) and non-automated vehicles on a highway in an urban environment. Supporting files include aerial reference images for four distinct data collection “Runs” (I90_94_moving_RunX_with_lanes.png, where X equals 1, 2, 3, and 4). Associated centerline files are also provided for each “Run” (I-90-moving-Run_X-geometry-with-ramps.csv). In each centerline file, x and y coordinates (in meters) marking each lane centerline are provided. The origin point of the reference image is located at the top left corner. Additionally, in each centerline file, an indicator variable is used for each lane to define the following types of road sections: 0=no ramp, 1=on-ramps, 2=off-ramps, and 3=weaving segments. The number attached to each column header is the numerical ID assigned for the specific lane (see “TGSIM – Centerline Data Dictionary – I90_94moving.csv” for more details). The dataset defines six northbound lanes using these centerline files. Images that map the lanes of interest to the numerical lane IDs referenced in the trajectory dataset are stored in the folder titled “Annotation on Regions.zip”. The northbound lanes are shown visually from left to right in I90_94_moving_lane1.png through I90_94_moving_lane6.png.

    This dataset was collected as part of the Third Generation Simulation Data (TGSIM): A Closer Look at the Impacts of Automated Driving Systems on Human Behavior project. During the project, six trajectory datasets capable of characterizing human-automated vehicle interactions under a diverse set of scenarios in highway and city environments were collected and processed. For more information, see the project report found here: https://rosap.ntl.bts.gov/view/dot/74647. This dataset, which is one of the six collected as part of the TGSIM project, contains data collected using one high-resolution 8K camera mounted on a helicopter that followed three SAE Level 2 ADAS-equipped vehicles (one at a time) northbound through the 4 km long segment at an altitude of 200 meters. Once a vehicle finished the segment, the helicopter would return to the beginning of the segment to follow the next SAE Level 2 ADAS-equipped vehicle to ensure continuous data collection. The segment was selected to study mandatory and discretionary lane changing and last-minute, forced lane-changing maneuvers. The segment has five off-ramps and three on-ramps to the right and one off-ramp and one on-ramp to the left. All roads have 88 kph (55 mph) speed limits. The camera captured footage during the evening rush hour (3:00 PM-5:00 PM CT) on a cloudy day.

    As part of this dataset, the following files were provided:

    • I90_94_moving_final.csv contains the numerical data to be used for analysis that includes vehicle level trajectory data at every 0.1 second. Vehicle size (small or large), width, length, and whether the vehicle was one of the automated test vehicles ("yes" or "no") are provided with instantaneous location, speed, and acceleration data. All distance measurements (width, length, location) were converted from pixels to meters using the following conversion factor: 1 pixel = 0.3-meter conversion.
    • I90_94_moving_RunX_with_lanes.png are the aerial reference images that define the geographic region and associated roadway segments of interest (see bounding boxes on northbound lanes) for each run X.
    • I-90-moving-Run_X-geometry-with-ramps.csv contain the coordinates that define the lane centerlines for each Run X. The "x" and "y" columns represent the horizontal and vertical locations in the reference image, respectively. The "ramp" columns define the type of roadway segment (0=no ramp, 1=on-ramps, 2=off-ramps, and 3=weaving segments). In total, the centerline files define six northbound lanes.
    • Annotation on Regions.zip, which includes images that visually map lanes (I90_94_moving_lane1.png through I90_94_moving_lane6.png) to their associated numerical lane IDs.
  9. u

    Data for Analysis of features in a sliding threshold of observation for...

    • deepblue.lib.umich.edu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liemohn, Michael W; Adam, Joshua G; Ganushkina, Natalia Y, Data for Analysis of features in a sliding threshold of observation for numeric evaluation (STONE) curve [Dataset]. http://doi.org/10.7302/2mcx-5749
    Explore at:
    Dataset provided by
    Deep Blue Data
    Authors
    Liemohn, Michael W; Adam, Joshua G; Ganushkina, Natalia Y
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Sep 20, 2013
    Description

    Many statistical tools have been developed to aid in the assessment of a numerical model’s quality at reproducing observations. Some of these techniques focus on the identification of events within the data set, times when the observed value is beyond some threshold value that defines it as a value of keen interest. An example of this is whether it will rain, in which events are defined as any precipitation above some defined amount. A method called the sliding threshold of observation for numeric evaluation (STONE) curve sweeps the event definition threshold of both the model output and the observations, resulting in the identification of threshold intervals for which the model does well at sorting the observations into events and nonevents. An excellent data-model comparison will have a smooth STONE curve, but the STONE curve can have wiggles and ripples in it. These features reveal clusters when the model systematically overestimates or underestimates the observations. This study establishes the connection between features in the STONE curve and attributes of the data-model relationship. The method is applied to a space weather example.

  10. h

    Data from: Numerical ferromagnetic resonance experiments in nano-sized...

    • rodare.hzdr.de
    zip
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kai, Wagner; Körber, Lukas; Stienen, Sven; Lindner, Jürgen; Farle, Michael; Kákay, Attila (2020). Numerical ferromagnetic resonance experiments in nano-sized elements [Dataset]. http://doi.org/10.14278/rodare.667
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    HZDR, TU Dresden
    Universität Duisburg-Essen
    HZDR
    Authors
    Kai, Wagner; Körber, Lukas; Stienen, Sven; Lindner, Jürgen; Farle, Michael; Kákay, Attila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the raw data for our paper "Numerical ferromagnetic resonance experiments in nano-sized elements" published in IEEE Magnetic Letters. It is organized in folders according to the figures in the paper. Each folder contains the experimental and numerical data, together with the MuMax3 definition files and possible scripts used for evaluation.

  11. l

    LScDC (Leicester Scientific Dictionary-Core)

    • figshare.le.ac.uk
    docx
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScDC (Leicester Scientific Dictionary-Core) [Dataset]. http://doi.org/10.25392/leicester.data.9896579.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (

  12. f

    Data from: Extensive theoretical/numerical comparative studies on H 2 and...

    • tandf.figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jung Hoon Kim; Tomomichi Hagiwara (2023). Extensive theoretical/numerical comparative studies on H 2 and generalised H 2 norms in sampled-data systems [Dataset]. http://doi.org/10.6084/m9.figshare.4206924.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Jung Hoon Kim; Tomomichi Hagiwara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper is concerned with linear time-invariant (LTI) sampled-data systems (by which we mean sampled-data systems with LTI generalised plants and LTI controllers) and studies their H 2 norms from the viewpoint of impulse responses and generalised H 2 norms from the viewpoint of the induced norms from L 2 to L ∞. A new definition of the H 2 norm of LTI sampled-data systems is first introduced through a sort of intermediate standpoint of those for the existing two definitions. We then establish unified treatment of the three definitions of the H 2 norm through a matrix function G(τ) defined on the sampling interval [0, h). This paper next considers the generalised H 2 norms, in which two types of the L ∞ norm of the output are considered as the temporal supremum magnitude under the spatial 2-norm and ∞-norm of a vector-valued function. We further give unified treatment of the generalised H 2 norms through another matrix function F(θ) which is also defined on [0, h). Through a close connection between G(τ) and F(θ), some theoretical relationships between the H 2 and generalised H 2 norms are provided. Furthermore, appropriate extensions associated with the treatment of G(τ) and F(θ) to the closed interval [0, h] are discussed to facilitate numerical computations and comparisons of the H 2 and generalised H 2 norms. Through theoretical and numerical studies, it is shown that the two generalised H 2 norms coincide with neither of the three H 2 norms of LTI sampled-data systems even though all the five definitions coincide with each other when single-output continuous-time LTI systems are considered as a special class of LTI sampled-data systems. To summarise, this paper clarifies that the five control performance measures are mutually related with each other but they are also intrinsically different from each other.

  13. e

    Numerical ferromagnetic resonance experiments in nano-sized elements -...

    • b2find.eudat.eu
    Updated Apr 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Apr 11, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the raw data for our paper "Numerical ferromagnetic resonance experiments in nano-sized elements" published in IEEE Magnetic Letters. It is organized in folders according to the figures in the paper. Each folder contains the experimental and numerical data, together with the MuMax3 definition files and possible scripts used for evaluation.

  14. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    • arcticdata.io
    grib
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 17, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  15. m

    Data from: Cost of doing business index in Latin America

    • data.mendeley.com
    Updated Sep 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus Libório (2020). Cost of doing business index in Latin America [Dataset]. http://doi.org/10.17632/b3yvn2pph9.1
    Explore at:
    Dataset updated
    Sep 22, 2020
    Authors
    Matheus Libório
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America
    Description

    Researchers claim that the Ease of Doing Business (EDBI) is an index that represents only one facet of the conditions of the business environment because the data is collected from companies of a certain size and city. When considering the problem of the representativeness of the EDBI, researchers assume that all the variables in the index vary according to the size of the company or city. In fact, many EDBI variables vary according to the size of the company or city e.g. variables related to public bureaucracy and which are measured by the time and the number of procedures required to do business (World Bank 2018). However, another part of the EDBI variables fits into the classic definition of Transaction Costs. That is, non-operating costs present in all transactions and which resemble transport fees or taxes. Among the EDBI variables, seventeen variables fit this definition because they are precisely taxes and fees regulated by governments that affect companies across the economy (World Bank 2018). This data set is used to create a new index to better represent the conditions of the countries' business environment. The data from twenty countries of Latin America (LA) are retrieved from the World DataBank database (World Bank 2020), which excludes Cuba due to the unavailability of the data.

    The selected variables were weighted according to the opinion of ten experts. The evaluation data of these specialists, as well as the calculations used to find the weights are also available.

  16. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Aug 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Investment Bank (EIB) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    World Bankhttps://www.worldbank.org/
    European Investment Bank (EIB)
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  17. Belarus Money Supply: M3: M2: According to National Definition

    • ceicdata.com
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Belarus Money Supply: M3: M2: According to National Definition [Dataset]. https://www.ceicdata.com/en/belarus/money-supply/money-supply-m3-m2-according-to-national-definition
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2024 - Dec 1, 2024
    Area covered
    Belarus
    Variables measured
    Monetary Aggregates/Money Supply/Money Stock
    Description

    Belarus Money Supply: M3: M2: According to National Definition data was reported at 52,212.426 BYN mn in Mar 2025. This records an increase from the previous number of 51,341.709 BYN mn for Feb 2025. Belarus Money Supply: M3: M2: According to National Definition data is updated monthly, averaging 18,343.688 BYN mn from Dec 2014 (Median) to Mar 2025, with 124 observations. The data reached an all-time high of 52,222.057 BYN mn in Dec 2024 and a record low of 7,981.596 BYN mn in Jan 2016. Belarus Money Supply: M3: M2: According to National Definition data remains active status in CEIC and is reported by National Bank of the Republic of Belarus. The data is categorized under Global Database’s Belarus – Table BY.KA001: Money Supply.

  18. E

    New Oxford Dictionary of English, 2nd Edition

    • live.european-language-grid.eu
    • catalog.elra.info
    Updated Dec 6, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2005). New Oxford Dictionary of English, 2nd Edition [Dataset]. https://live.european-language-grid.eu/catalogue/lcr/2276
    Explore at:
    Dataset updated
    Dec 6, 2005
    License

    http://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttp://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    Description

    This is Oxford University Press's most comprehensive single-volume dictionary, with 170,000 entries covering all varieties of English worldwide. The NODE data set constitutes a fully integrated range of formal data types suitable for language engineering and NLP applications: It is available in XML or SGML. - Source dictionary data. The NODE data set includes all the information present in the New Oxford Dictionary of English itself, such as definition text, example sentences, grammatical indicators, and encyclopaedic material. - Morphological data. Each NODE lemma (both headwords and subentries) has a full listing of all possible syntactic forms (e.g. plurals for nouns, inflections for verbs, comparatives and superlatives for adjectives), tagged to show their syntactic relationships. Each form has an IPA pronunciation. Full morphological data is also given for spelling variants (e.g. typical American variants), and a system of links enables straightforward correlation of variant forms to standard forms. The data set thus provides robust support for all look-up routines, and is equally viable for applications dealing with American and British English. - Phrases and idioms. The NODE data set provides a rich and flexible codification of over 10,000 phrasal verbs and other multi-word phrases. It features comprehensive lexical resources enabling applications to identify a phrase not only in the form listed in the dictionary but also in a range of real-world variations, including alternative wording, variable syntactic patterns, inflected verbs, optional determiners, etc. - Subject classification. Using a categorization scheme of 200 key domains, over 80,000 words and senses have been associated with particular subject areas, from aeronautics to zoology. As well as facilitating the extraction of subject-specific sub-lexicons, this also provides an extensive resource for document categorization and information retrieval. - Semantic relationships. The relationships between every noun and noun sense in the dictionary are being codified using an extensive semantic taxonomy on the model of the Princeton WordNet project. (Mapping to WordNet 1.7 is supported.) This structure allows elements of the basic lexical database to function as a formal knowledge database, enabling functionality such as sense disambiguation and logical inference. - Derived from the detailed and authoritative corpus-based research of Oxford University Press's lexicographic team, the NODE data set is a powerful asset for any task dealing with real-world contemporary English usage. By integrating a number of different data types into a single structure, it creates a coherent resource which can be queried along numerous axes, allowing open-ended exploitation by many kinds of language-related applications.

  19. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  20. H

    Dictionary of Titles

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahad Althobaiti; Ahmad Alabdulkareem; Judy Hanwen Shen; Iyad Rahwan; Esteban Moro; Alex Rutherford (2022). Dictionary of Titles [Dataset]. http://doi.org/10.7910/DVN/DQW8IP
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Shahad Althobaiti; Ahmad Alabdulkareem; Judy Hanwen Shen; Iyad Rahwan; Esteban Moro; Alex Rutherford
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Hand transcribed content from the United States Bureau of Labour Statistics Dictionary of Titles (DoT). The DoT is a record of occupations and a description of the tasks performed. Five editions exist from 1939, 1949, 1965, 1977 and 1991. The DoT was replaced by O*NET structured data on jobs, workers and their characteristics. However, apart from the 1991 data, the data in the DoT is not easily ingestible, existing only in scalar PDF documents. Attempts at Optical Character Recognition led to low accuracy. For that reason we present here hand transcribed textual data from these documents. Various data are available for each occupation e.g. numerical codes, references to other occupations as well as the free text description. For that reason the data for each edition is presented in 'long' format with a variable number of lines, with a blank line between occupations. Consult the transcription instructions for more details. Structured meta-data (see here) on occupations is also available for the 1965, 1977 and 1991 editions. For the 1965, 1977 and 1991 editions, this data can be extracted from the numerical codes with the occupational entries, the key for these codes is found in the 1965 edition in separate tables exist which were transcribed. The instructions provided to transcribers for this edition are also added to the repository. The original documents are freely available in PDF format (e.g. here) This data accompanies the paper 'Longitudinal Complex Dynamics of Labour Markets Reveal Increasing Polarisation' by Althobaiti et al

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institute of Standards and Technology (2025). Dictionary of Algorithms and Data Structures (DADS) [Dataset]. https://catalog.data.gov/dataset/dictionary-of-algorithms-and-data-structures-dads-910e0
Organization logo

Dictionary of Algorithms and Data Structures (DADS)

Explore at:
Dataset updated
Mar 14, 2025
Dataset provided by
National Institute of Standards and Technologyhttp://www.nist.gov/
Description

The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.

Search
Clear search
Close search
Google apps
Main menu