CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: Updates to this data product are discontinued. Dozens of definitions are currently used by Federal and State agencies, researchers, and policymakers. The ERS Rural Definitions data product allows users to make comparisons among nine representative rural definitions.
Methods of designating the urban periphery range from the use of municipal boundaries to definitions based on counties. Definitions based on municipal boundaries may classify as rural much of what would typically be considered suburban. Definitions that delineate the urban periphery based on counties may include extensive segments of a county that many would consider rural.
We have selected a representative set of nine alternative rural definitions and compare social and economic indicators from the 2000 decennial census across the nine definitions. We chose socioeconomic indicators (population, education, poverty, etc.) that are commonly used to highlight differences between urban and rural areas.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files State-Level Maps For complete information, please visit https://data.gov.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 3rd Edition (1957) of the Atlas of Canada is a map consisting of two condensed maps showing the distribution of rural population according to the 1951 census of Canada. The term 'rural population' embraces all persons residing outside the census metropolitan areas and cities, towns and villages of 1000 inhabitants and over, whether such cities, towns and villages were incorporated or not. The distribution is shown according to the two divisions of rural population commonly made, namely, rural farm and rural non-farm. The rural farm population comprises all people residing on a farm regardless of occupation. A farm for such purposes is defined as a land holding of over three acres in size on which agricultural operations are carried out, or a land holding from one to three acres in size, which in 1950 accounted for an agricultural production amounting to $250 or more. All other persons classed as rural population come under the rural non-farm division. The northern parts of Yukon Territory and the Northwest Territories are not included on the rural non-farm map although there are some rural non-farm dwellers in these areas. In 1951, Canada's rural population was 52.5% rural farm, and 47.5% rural non-farm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Urban areas
Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.
Urban areas are delineated using the following criteria. They:
form a contiguous cluster of one or more SA2s,
contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,
have a high coverage of built physical structures and artificial landscapes such as:
have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,
have planned development within the next 5–8 years.
Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries
Rural areas
Rural areas are classified as rural settlements or other rural.
Rural settlements
Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.
Rural settlements are delineated using the following criteria. They:
form a contiguous cluster of one or more SA1s,
contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,
represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,
contain at least one community or public building, such as a church, school, or shop.
To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.
Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.
Other rural
Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.
Water
Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.
The water classes include:
inland water – non-contiguous, defined by territorial authority,
inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,
oceanic – non-contiguous, defined by regional council.
To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
High definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
The rural-urban commuting area codes (RUCA) classify U.S. census tracts using measures of urbanization, population density, and daily commuting from the decennial census. The most recent RUCA codes are based on data from the 2000 decennial census. The classification contains two levels. Whole numbers (1-10) delineate metropolitan, micropolitan, small town, and rural commuting areas based on the size and direction of the primary (largest) commuting flows. These 10 codes are further subdivided to permit stricter or looser delimitation of commuting areas, based on secondary (second largest) commuting flows. The approach errs in the direction of more codes, providing flexibility in combining levels to meet varying definitional needs and preferences. The 1990 codes are similarly defined. However, the Census Bureau's methods of defining urban cores and clusters changed between the two censuses. And, census tracts changed in number and shapes. The 2000 rural-urban commuting codes are not directly comparable with the 1990 codes because of these differences. An update of the Rural-Urban Commuting Area Codes is planned for late 2013.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Latvia LV: Rural Population: % of Total Population data was reported at 31.925 % in 2017. This records a decrease from the previous number of 31.979 % for 2016. Latvia LV: Rural Population: % of Total Population data is updated yearly, averaging 32.117 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 47.133 % in 1960 and a record low of 30.750 % in 1990. Latvia LV: Rural Population: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Latvia – Table LV.World Bank.WDI: Population and Urbanization Statistics. Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Weighted average;
FHFA's Duty to Serve regulation defines "rural area" as: (i) A census tract outside of an MSA as designated by the Office of Management and Budget (OMB); or (ii) A census tract in an MSA as designated by OMB that is: (A) Outside of the MSA’s Urbanized Areas as designated by the U.S. Department of Agriculture’s (USDA) Rural-Urban Commuting Area (RUCA) Code #1, and outside of tracts with a housing density of over 64 housing units per square mile for USDA’s RUCA Code #2; or (B) A colonia census tract that does not satisfy paragraphs (i) or (ii)(A) of this definition. This data contains both the specific geographies which meet the Rural Areas definition and also the areas defined as “high-needs rural regions”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Rural Population: % of Total Population data was reported at 17.942 % in 2017. This records a decrease from the previous number of 18.138 % for 2016. United States US: Rural Population: % of Total Population data is updated yearly, averaging 24.985 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 30.004 % in 1960 and a record low of 17.942 % in 2017. United States US: Rural Population: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Weighted average;
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population. Aggregation of urban and rural population may not add up to total population because of different country coverages.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Urban rural 2023 update
UR 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure UR geographies are relevant and meet criteria before each five-yearly population and dwelling census. UR 2023 contains 13 new rural settlements and 7 new small urban areas. Updates were made to reflect real world change including new subdivisions and motorways, and to improve delineation of urban areas and rural settlements. The Wānaka urban area, whose population has grown to be more than 10,000 based on population estimates, has been reclassified to a medium urban area in the 2023 urban rural indicator.
In the 2023 classification there are:
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 745 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2023 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
The Department of Veterans Affairs provides official estimates and projections of the Veteran population using the Veteran Population Projection Model (VetPop). Based on the latest model VetPop2023 and the most recent national survey estimates from the 2023 American Community Survey 1-Year (ACS) data, the projected number of Veterans living in the 50 states, DC and Puerto Rico for fiscal years, 2023 to 2025, are allocated to Urban and Rural areas. As defined by the Census Bureau, Rural encompasses all population, housing, and territory not included within an Urban area (https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html). This table contains the Veteran estimates by urban/rural, sex, age group, and race. Note: rounding to the nearest 1,000 is always appropriate for VetPop estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PLURAL (Place-level urban-rural indices) is a framework to create continuous classifications of "rurality" or "urbanness" based on the spatial configuration of populated places. PLURAL makes use of the concept of "remoteness" to characterize the level of spatial isolation of a populated place with respect to its neighbors. There are two implementations of PLURAL, including (a) PLURAL-1, based on distances to the nearest places of user-specified population classes, and (b) PLURAL-2, based on neighborhood characterization derived from spatial networks. PLURAL requires simplistic input data, i.e., the coordinates (x,y) and population p of populated places (villages, towns, cities) in a given point in time. Due to its simplistic input, the PLURAL rural-urban classification scheme can be applied to historical data, as well as to data from data-scarce settings. Using the PLURAL framework, we created place-level rural-urban indices for the conterminous United States from 1930 to 2018. Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. We developed a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. Based on these methods, we constructed indices of urbanness for 30,000 places in the United States from 1930 to 2018. We call these indices the place-level urban-rural index (PLURAL), enabling long-term, fine-grained analyses of urban and rural change in the United States. The method paper has been peer-reviewed and is published in "Landscape and Urban Planning". The PLURAL indices from 1930 to 2018 are available as CSV files, and as point-based geospatial vector data (.SHP). Moreover, we provide animated GIF files illustrating the spatio-temporal variation of the different variants of the PLURAL indices, illustrating the dynamics of the rural-urban continuum in the United States from 1930 to 2018. Apply the PLURAL rural-urban classification to your own data: Python code is fully open source and available at https://github.com/johannesuhl/plural. Data sources: Place-level population counts (1980-2010) and place locations 1930 - 2018 were obtained from IPUMS NHGIS, (University of Minnesota, www.nhgis.org; Manson et al. 2022). Place-level population counts 1930-1970 were digitized from historical census records (U.S. Census Bureau 1942, 1964). References: Uhl, J.H., Hunter, L.M., Leyk, S., Connor, D.S., Nieves, J.J., Hester, C., Talbot, C. and Gutmann, M., 2023. Place-level urban–rural indices for the United States from 1930 to 2018. Landscape and Urban Planning, 236, p.104762. DOI: https://doi.org/10.1016/j.landurbplan.2023.104762 Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 16.0 [dataset]. Minneapolis, MN: IPUMS. 2021. http://doi.org/10.18128/D050.V16.0 U.S. Census Bureau (1942). U.S. Census of Population: 1940. Vol. I, Number of Inhabitants. U.S. Government Printing Office, Washington, D.C. U.S. Census Bureau (1964). U.S. Census of Population: 1960. Vol. I, Characteristics of the Population. Part I, United States Summary. U.S. Government Printing Office, Washington, D.C.
The Department of Veterans Affairs provides official estimates and projections of the Veteran population using the Veteran Population Projection Model (VetPop). Based on the latest model VetPop2023 and the most recent national survey estimates from the 2023 American Community Survey 1-Year (ACS) data, the projected number of Veterans living in the 50 states, DC and Puerto Rico for fiscal years, 2023 to 2025, are allocated to Urban and Rural areas. As defined by the Census Bureau, Rural encompasses all population, housing, and territory not included within an Urban area (https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html). This tables contains the Veteran estimates by urban/rural and period of service. Note: rounding to the nearest 1,000 is always appropriate for VetPop estimates.
This dataset classifies statistical areas (lower super output areas or LSOAs) in Cheshire East on either a two level classification - rural or urban - or a six level classification; rural, predominantly rural, more rural than urban, more urban than rural, predominantly urban and urban. A methodology document explains how the classifications were created. A map of the classifications is also available.Six variables are used to create the classification, four of these come from the census:1. Proportion (aged 16-74) of employment in agriculture 2. Average number of cars per household 3. Population density - people per hectare 4. Proportion (aged 16-74) self-employed of those economically active 5. Access to services – this includes road distances to; a GP surgery, a supermarket or convenience store, a primary school and distance to a Post Office6. Buildings as a proportion of all land useThe classification will be updated following the release of the 2021 Census in 2022-23.There are many definitions of areas within Cheshire East classifying them into varying degrees of rural or urban. Organisations such as the Countryside Agency, DEFRA, the Office for National Statistics and central government each produced their own classification. The indicators used and available geographies are different. Several local definitions also existed. To remedy this, a local classification was developed.
https://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttps://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The Scottish Government (SG) Urban Rural Classification provides a consistent way of defining urban and rural areas across Scotland. The classification aids policy development and the understanding of issues facing urban, rural and remote communities. It is based upon two main criteria: (i) population as defined by National Records of Scotland (NRS), and (ii) accessibility based on drive time analysis to differentiate between accessible and remote areas in Scotland. The classification can be analysed in a two, three, six or eight fold form. The two-fold classification simply distinguishes between urban and rural areas through two categories, urban and rural, while the three-fold classification splits the rural category between accessible and remote. Most commonly used is the 6-fold classification which distinguishes between urban, rural, and remote areas through six categories. The 8-fold classification further distinguishes between remote and very remote regions. The Classification is normally updated on a biennial basis, with the current dataset reflective of the year 2020. Data for previous versions are available for download in ESRI Shapefile format.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
List of rural municipalities within the meaning of “Eligibility to the GIP”, a global allocation of equipment paid to the department of Saône and Loire. Prefectural Order No. 2017103-001 of 13 April 2017. Article D3334-8-1 of the General Code of Local and Regional Authorities: The following municipalities in metropolitan France are considered to be rural municipalities for the purposes of Articles L. 3334-10 and R. 3334-8: — municipalities whose population does not exceed 2 000 inhabitants; — municipalities whose population exceeds 2 000 inhabitants and does not exceed 5 000 inhabitants, if they do not belong to an urban unit or if they belong to an urban unit whose population does not exceed 5000 inhabitants. The urban reference unit is that defined by the National Institute of Statistics and Economic Studies. The population taken into account is the total population authenticated at the end of the population census.
This dataset is published as Open DataThe Scottish Government (SG) Urban Rural Classification provides a consistent way of defining urban and rural areas across Scotland. The classification aids policy development and the understanding of issues facing urban, rural and remote communities. It is based upon two main criteria: (i) population as defined by National Records of Scotland (NRS), and (ii) accessibility based on drive time analysis to differentiate between accessible and remote areas in Scotland. The classification can be analysed in a two, three, six or eight fold form. The two-fold classification simply distinguishes between urban and rural areas through two categories, urban and rural, while the three-fold classification splits the rural category between accessible and remote. Most commonly used is the 6-fold classification which distinguishes between urban, rural, and remote areas through six categories. The 8-fold classification further distinguishes between remote and very remote regions. The Classification is normally updated on a biennial basis, with the current dataset reflective of the year 2020. Data for previous versions are available for download in ESRI Shapefile format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Global Urban-Rural Catchment Areas (URCA) is a raster dataset of the 30 urban-rural continuum categories of catchment areas for cities and towns. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration.
Data publication: 2021-01-01
Contact points:
Metadata contact: Theresa McMenomy FAO-UN
Contact: Andrea Cattaneo FAO-UN
Contact: Theresa McMenomy FAO-UN
Data lineage:
The dataset is from https://doi/10.1073/pnas.2011990118 and http://dx.doi.org/10.6084/m9.figshare.12579572
Resource constraints:
CC By 4.0
Online resources:
The Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.
The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.
Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.
Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.
Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.
For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.
To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: Updates to this data product are discontinued. Dozens of definitions are currently used by Federal and State agencies, researchers, and policymakers. The ERS Rural Definitions data product allows users to make comparisons among nine representative rural definitions.
Methods of designating the urban periphery range from the use of municipal boundaries to definitions based on counties. Definitions based on municipal boundaries may classify as rural much of what would typically be considered suburban. Definitions that delineate the urban periphery based on counties may include extensive segments of a county that many would consider rural.
We have selected a representative set of nine alternative rural definitions and compare social and economic indicators from the 2000 decennial census across the nine definitions. We chose socioeconomic indicators (population, education, poverty, etc.) that are commonly used to highlight differences between urban and rural areas.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files State-Level Maps For complete information, please visit https://data.gov.