Facebook
TwitterThis zip file contains geodatabases with raster mosaic datasets. The raster mosaic datasets consist of georeferenced tiff images of mineral potential maps, their associated metadata, and descriptive information about the images. These images are duplicates of the images found in the georeferenced tiff images zip file. There are four geodatabases containing the raster mosaic datasets, one for each of the four SaMiRA report areas: North-Central Montana; North-Central Idaho; Southwestern and South-Central Wyoming and Bear River Watershed; and Nevada Borderlands. The georeferenced images were clipped to the extent of the map and all explanatory text, gathered from map explanations or report text was imported into the raster mosaic dataset database as ‘Footprint’ layer attributes. The data compiled into the 'Footprint' layer tables contains the figure caption from the original map, online linkage to the source report when available, and information on the assessed commodities according to the legal definition of mineral resources—metallic, non-metallic, leasable non-fuel, leasable fuel, geothermal, paleontological, and saleable. To use the raster mosaic datasets in ArcMap, click on “add data”, double click on the [filename].gdb, and add the item titled [filename]_raster_mosaic. This will add all of the images within the geodatabase as part of the raster mosaic dataset. Once added to ArcMap, the raster mosaic dataset appears as a group of three layers under the mosaic dataset. The first item in the group is the ‘Boundary’, which contains a single polygon representing the extent of all images in the dataset. The second item is the ‘Footprint’, which contains polygons representing the extent of each individual image in the dataset. The ‘Footprint’ layer also contains the attribute table data associated with each of the images. The third item is the ‘Image’ layer and contains the images in the dataset. The images are overlapping and must be selected and locked, or queried in order to be viewed one at a time. Images can be selected from the attribute table, or can be selected using the direct select tool. When using the direct select tool, you will need to deselect the ‘overviews’ after clicking on an image or group of images. To do this, right click on the ‘Footprint’ layer and hover over ‘Selection’, then click ‘Reselect Only Primary Rasters’. To lock a selected image after selecting it, right-click on the ‘Footprint’ layer in the table of contents window and hover over ‘Selection’, then click ‘Lock To Selected Rasters’. Another way to view a single image is to run a definition query on the image. This is done by right clicking on the raster mosaic in the table of contents and opening the layer properties box. Then click on the ‘Definition Query’ tab and create a query for the desired image.
Facebook
TwitterThis layer displays the urban watercourses showing open stream channels and flow within culverts, drainage laterals, and drainage mainlines. The Washington State Department of Natural Resources typing code for channel and fish use and the WRIA (Washington State Department of Ecology Water Resource Inventory Area) code are included. Displays data from DWW.stream_ln_pv symbolized on the attribute FEATYPE. The layer has the following definition query, STRM_EXPIRATION_DATE IS NULL. The data will not display when zoomed out beyond 1:200,000. Labels are based on the attribute SHORT_NAME and will not display when zoomed out beyond 1:50,000. Refreshed weekly. Maintained by DWW Maintenance staff and USM.
Facebook
TwitterA. SUMMARY This dataset was first created as part of the SFMTA On Street Car Share Pilot Program (approved by the MTA Board in July 2013) to illustrate the location of implemented and planned (various stages) spaces throughout the city. B. METHODOLOGY The locations were originally provided to the MTA as requests by the three car share organizations (CSOs). These were given as a .kml file, which was converted to a .shp. Additional fields were created using spatial joins (zipcode, supervisor district, CNN, etc). Use definition query tool to display those locations with a certain attribute. For example, query Existing = 1 to display those locations that are on street operating. 500 submissions were given by CSOs to the MTA, but only a portion of those were brought to the MTA Board for approval, and even fewer were implemented as operational on street spaces. With no definition query, you can see all spaces as features, with varying levels of data completion. C. UPDATE FREQUENCY During periods of implementation/construction, updates were as frequent as daily or weekly. However, as the frequency of newly implemented spaces slowed over the course of the pilot, updates occurred less frequently--weekly or monthly. Updates will be needed as new spaces are implemented--many of the spaces not taken past MTA Board approval have incomplete data. D. OTHER CRITICAL INFO Each feature (or each row, or point) represents a single car share parking space. Some parking spaces belong to a "pod" where there are two adjacent car share parking spaces, indicated by the "PodType" field. To summarize or analyze by pod, use the "POD" field.
Facebook
TwitterThis layer contains Legal City boundaries within Los Angeles County. The Los Angeles County Department of Public Works provides the most current shape file of these city boundaries for download at its Spatial Information Library.Note: This boundary layer will not line up with the Thomas Brothers city layer. Principal attributes include:CITY_NAME: represents the city's name.CITY_TYPE: may be used for definition queries; "Unincorporated" or "City".FEAT_TYPE: contains the type of feature each polygon represents:Land - Use this value for your definition query if you want to see only land features on your map.Pier - One example is the Santa Monica Pier. Man-made features may be regarded as extensions of the coastline.Breakwater - Examples include the breakwater barriers that protect the Los Angeles Harbor.Water - Polygons with this attribute value represent internal navigable waters. Examples of internal waters are found in the Long Beach Harbor and in Marina del Rey.3NM Buffer - Per the Submerged Lands Act, the seaward boundaries of coastal cities and unincorporated county areas are three nautical miles (a nautical mile is 1852 meters) from the coastline.
Facebook
TwitterNeighborhood design guidelines direct designers and project reviewers to look closely at the neighborhood and its character to design new buildings that enhance their surroundings. Each record links to neighborhood specific design guidelines.Published from DPD.DR_Guideline_Areas with a definition query of NSDRGA = 1 to omit incomplete records. Symbolized on the NSDRGA_NAM attribute field.For more information, visit the SDCI Design Review Program webpage.Updated as needed, last updated October 2023.
Facebook
TwitterKEYWORD SEARCH IN TEXT CUBE: FINDING TOP-K RELEVANT CELLS BOLIN DING, YINTAO YU, BO ZHAO, CINDY XIDE LIN, JIAWEI HAN, AND CHENGXIANG ZHAI Abstract. We study the problem of keyword search in a data cube with text-rich dimension(s) (so-called text cube). The text cube is built on a multidimensional text database, where each row is associated with some text data (e.g., a document) and other structural dimensions (attributes). A cell in the text cube aggregates a set of documents with matching attribute values in a subset of dimensions. A cell document is the concatenation of all documents in a cell. Given a keyword query, our goal is to find the top-k most relevant cells (ranked according to the relevance scores of cell documents w.r.t. the given query) in the text cube. We define a keyword-based query language and apply IR-style relevance model for scoring and ranking cell documents in the text cube. We propose two efficient approaches to find the top-k answers. The proposed approaches support a general class of IR-style relevance scoring formulas that satisfy certain basic and common properties. One of them uses more time for pre-processing and less time for answering online queries; and the other one is more efficient in pre-processing and consumes more time for online queries. Experimental studies on the ASRS dataset are conducted to verify the efficiency and effectiveness of the proposed approaches.
Facebook
TwitterThis layer contains Legal City boundaries within Los Angeles County. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works.The Los Angeles County Department of Public Works provides the most current shape file of these city boundaries for download at its https://egis-lacounty.hub.arcgis.com/datasets/la-county-city-boundaries/explore?location=34.153321%2C-118.083123%2C9.49.Note: This boundary layer will not line up with the Thomas Brothers® city layer.Principal attributes include:CITY_NAME: represents the city's name.CITY_TYPE: may be used for definition queries; "Unincorporated" or "City".FEAT_TYPE: contains the type of feature each polygon represents:Land - Use this value for your definition query if you want to see only land features on your map.Pier - One example is the Santa Monica Pier. Man-made features may be regarded as extensions of the coastline.Breakwater - Examples include the breakwater barriers that protect the Los Angeles Harbor.Water - Polygons with this attribute value represent internal navigable waters. Examples of internal waters are found in the Long Beach Harbor and in Marina del Rey.3NM Buffer - Per the Submerged Lands Act, the seaward boundaries of coastal cities and unincorporated county areas are three nautical miles (a nautical mile is 1852 meters) from the coastlineURL: cities website current as of 01/01/2023This product is for information purposes and should not be used for legal, engineering, or survey purposes. County assumes no liability for any errors or omissions.
Facebook
TwitterThis layer displays all outfalls within the City of Seattle (and the former service area north of the City limits) regardless of ownership. Selected Maximo data are included. Displays data from DWW.outfall_pt_pv with the following definition query, OUT_LIFECYCLE_CODE IN ( 'C' , 'UNK' ,'T','TBC','U', 'PC'). Layer is symbolized on the attribute OWNER. This layer does not display when zoomed out beyond 1:10,000. Labels are based on the attributes OUT_S_ENDPT_ID, OUT_D_ENDPT_ID, and OUT_OUTFALL_ID. Labels do not display when zoomed out beyond 1:3,000.
Facebook
Twitter2016 10-foot contour data derived from 3ft pixel bare earth rasters for the Seattle Area that were acquired and processed 02/24/2016 -03/28/2016 by Quantum Spatial (QSI). Displays data from IMAGE.Contour_2016, SP_2016_Contour_2 with the following definition query: Type = 2. This layer displays when zoomed in to 1:9,600. Labels are based on the attribute Contour. Because of the size of this dataset, we do not recommend trying to download it. Please use as a service.
Facebook
TwitterThe California State Places Boundary data.
This dataset offers high-resolution boundary definitions, which allow users to analyze and visualize California’s state limits within mapping and spatial analysis projects.
The shapefile is part of a ZIP archive containing multiple related files that together define and support the boundary data. These files include:
.shp (Shape): This is the core file containing the vector data for California’s Places boundaries, representing the geographic location and geometry of the state outline.
.shx (Shape Index): A companion index file for the .shp file, allowing for quick spatial queries and efficient data access.
.dbf (Attribute Table): A database file that stores attribute data linked to the geographic features in the .shp file, such as area identifiers or classification codes, in a tabular format compatible with database applications.
.prj (Projection): This file contains projection information, specifying the coordinate system and map projection used for the data, essential for aligning it accurately on maps.
.cpg (Code Page): This optional file indicates the character encoding for the attribute data in the .dbf file, which is useful for ensuring accurate text representation in various software.
.sbn and .sbx (Spatial Index): These files serve as a spatial index for the shapefile, allowing for faster processing of spatial queries, especially for larger datasets.
.xml (Metadata): A metadata file in XML format, often following FGDC or ISO standards, detailing the dataset’s origin, structure, and usage guidelines, providing essential information about data provenance and quality.
Facebook
TwitterThe California State Boundary data from the US Census Bureau's 2023 MAF/TIGER database provides detailed geographic boundary data designed for use in Geographic Information System applications.
This dataset offers high-resolution boundary definitions, which allow users to analyze and visualize California’s state limits within mapping and spatial analysis projects.
The shapefile is part of a ZIP archive containing multiple related files that together define and support the boundary data. These files include:
.shp (Shape): This is the core file containing the vector data for California’s boundary, representing the geographic location and geometry of the state outline.
.shx (Shape Index): A companion index file for the .shp file, allowing for quick spatial queries and efficient data access.
.dbf (Attribute Table): A database file that stores attribute data linked to the geographic features in the .shp file, such as area identifiers or classification codes, in a tabular format compatible with database applications.
.prj (Projection): This file contains projection information, specifying the coordinate system and map projection used for the data, essential for aligning it accurately on maps.
.cpg (Code Page): This optional file indicates the character encoding for the attribute data in the .dbf file, which is useful for ensuring accurate text representation in various software.
.sbn and .sbx (Spatial Index): These files serve as a spatial index for the shapefile, allowing for faster processing of spatial queries, especially for larger datasets.
.xml (Metadata): A metadata file in XML format, often following FGDC or ISO standards, detailing the dataset’s origin, structure, and usage guidelines, providing essential information about data provenance and quality.
This comprehensive set of files ensures compatibility with most GIS software and allows users to perform a wide range of spatial analyses with detailed information on California’s boundary as defined by the U.S. Census Bureau's 2023 MAF/TIGER database.
Facebook
TwitterWetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands and the Northern Mariana IslandsVisible Scale: The data is visible at scales from 1:144,000 to 1:1,000Resolution/Tolerance: 0.0001 meters/0.001 metersNumber of Features: 34,954,623 diced, after applying a 50,000 vertex limit to an original set of 34,950,653 featuresFeature Limit: 10,000Source: U.S. Fish and Wildlife ServicePublication Date: September 29, 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the September 29, 2020 version of the NWI. This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data.NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesArea - area of the wetland in acresEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Text = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis zip file contains geodatabases with raster mosaic datasets. The raster mosaic datasets consist of georeferenced tiff images of mineral potential maps, their associated metadata, and descriptive information about the images. These images are duplicates of the images found in the georeferenced tiff images zip file. There are four geodatabases containing the raster mosaic datasets, one for each of the four SaMiRA report areas: North-Central Montana; North-Central Idaho; Southwestern and South-Central Wyoming and Bear River Watershed; and Nevada Borderlands. The georeferenced images were clipped to the extent of the map and all explanatory text, gathered from map explanations or report text was imported into the raster mosaic dataset database as ‘Footprint’ layer attributes. The data compiled into the 'Footprint' layer tables contains the figure caption from the original map, online linkage to the source report when available, and information on the assessed commodities according to the legal definition of mineral resources—metallic, non-metallic, leasable non-fuel, leasable fuel, geothermal, paleontological, and saleable. To use the raster mosaic datasets in ArcMap, click on “add data”, double click on the [filename].gdb, and add the item titled [filename]_raster_mosaic. This will add all of the images within the geodatabase as part of the raster mosaic dataset. Once added to ArcMap, the raster mosaic dataset appears as a group of three layers under the mosaic dataset. The first item in the group is the ‘Boundary’, which contains a single polygon representing the extent of all images in the dataset. The second item is the ‘Footprint’, which contains polygons representing the extent of each individual image in the dataset. The ‘Footprint’ layer also contains the attribute table data associated with each of the images. The third item is the ‘Image’ layer and contains the images in the dataset. The images are overlapping and must be selected and locked, or queried in order to be viewed one at a time. Images can be selected from the attribute table, or can be selected using the direct select tool. When using the direct select tool, you will need to deselect the ‘overviews’ after clicking on an image or group of images. To do this, right click on the ‘Footprint’ layer and hover over ‘Selection’, then click ‘Reselect Only Primary Rasters’. To lock a selected image after selecting it, right-click on the ‘Footprint’ layer in the table of contents window and hover over ‘Selection’, then click ‘Lock To Selected Rasters’. Another way to view a single image is to run a definition query on the image. This is done by right clicking on the raster mosaic in the table of contents and opening the layer properties box. Then click on the ‘Definition Query’ tab and create a query for the desired image.