Facebook
TwitterThe U.S. Defense Department oversees the USA"s armed forces and manages over 30 million acres of land. With over 2.8 million service members and civilian employees the department is the world"s largest employer.Dataset SummaryPhenomenon Mapped: Lands managed by the U.S. Department of DefenseGeographic Extent: United States, Guam, Puerto RicoData Coordinate System: WGS 1984Visible Scale: The data is visible at all scalesSource: DOD Military Installations Ranges and Training Areas layer. Publication Date: May 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Department of Defense lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "department of defense" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "department of defense" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterDisplays traffic study flow count data maintained by Seattle Department of Transportation.Users can utilize following definition query for traffic count study data for a particular year. Note-ENTER YEAR is the particular year of interest.Definition Query: STDY_YEAR=ENTER YEAR AND FLOWMAP = 'Y'Refresh: Weekly
Facebook
TwitterSoccer Fields maintained by Seattle Parks and Recreation.This hosted feature layer is published with the following definition query on the DPR.AthleticsFields feature class: WHERE SOCCER > 0Refresh Cycle: WeeklyFeature Class: DPR.AthleticsFields
Facebook
TwitterData source is DWW.polygon_plgn_pv using the following definition query, PLY_LIFECYCLE_CODE IN ( 'C' ,'UNK', 'T', 'TBC', 'U', 'PC') AND PLY_FEATYPE_CODE = 'PND'. This layer does not display when zoomed out beyond 1:24,000. Labels do not display when zoomed out beyond 1:3,000 and are based on the attribute DESCRIPTION. Refreshed weekly.
Facebook
TwitterThis webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterSpray Parks maintained by Seattle Parks and Recreation.This hosted feature layer is published with the following definition query on the DPR.WadingPools feature class: TYPE = 'Spray Feature'Refresh Cycle: WeeklyFeature Class: DPR.WadingPools
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.
Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable. This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”
A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).
All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.
These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.
Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.
DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterDisplays railroad crossings maintained by the Seattle Department of Transportation.Views: Link, adds recommended definition query for general use: 'CURRENT_STATUS NOT IN('REMOVED')'Refresh Cycle: DailyFeature Class: SDOT.V_RRCrossings
Facebook
TwitterThis layer displays all outfalls within the City of Seattle (and the former service area north of the City limits) regardless of ownership. Selected Maximo data are included. Displays data from DWW.outfall_pt_pv with the following definition query, OUT_LIFECYCLE_CODE IN ( 'C' , 'UNK' ,'T','TBC','U', 'PC'). Layer is symbolized on the attribute OWNER. This layer does not display when zoomed out beyond 1:10,000. Labels are based on the attributes OUT_S_ENDPT_ID, OUT_D_ENDPT_ID, and OUT_OUTFALL_ID. Labels do not display when zoomed out beyond 1:3,000. Refreshed weekly
Facebook
TwitterImpervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. The layer is organized into a time series with years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 for the lower 48 conterminous US states. This information may be used in conjunction with the USA NLCD Land Cover layer. Time SeriesBy default, this service will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are not included in this time series. Only three years for a portion of Alaska around Anchorage are available from MRLC at this time. Furthermore, these rasters are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection.Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryPhenomenon Mapped: The proportion of the landscape that is impervious to waterUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area ConicExtent: Contiguous United StatesNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 3, 2021ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterDisplays the locations and attributes of SDOT street signs on block faces throughout the City by sign category.Refresh Cycle: Daily RefreshFeature Class: V_SIGNSStreet Sign Definition Query:To view the INSVC, or PLNRECON, or ' ' status, useCURRENT_STATUS = 'INSVC' OR CURRENT_STATUS ='PLNRECON' OR CURRENT_STATUS = ' '
Facebook
TwitterThe US National Park Service manages 84.4 million acres that include the United States" 63 national parks, many national monuments, and other conservation and historical properties. These lands range from the 13 million acre Wrangell-St. Elias National Park and Preserve in Alaska to the 0.02 acre Thaddeus Kosciuszko National Memorial in Pennsylvania.Dataset SummaryPhenomenon Mapped: Administrative boundaries of U.S. National Park Service landsGeographic Extent: 50 United States, District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana IslandsData Coordinate System: WGS 1984Visible Scale: The data is visible at all scalesSource: NPS Administrative Boundaries of National Park System Units layerPublication Date: April, 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Park Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "national park service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "national park service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe tree canopy layer displays the proportion of the land surface covered by trees for the years 2011 to 2021 from the National Land Cover Database. Source: https://www.mrlc.govPhenomenon Mapped: Proportion of the landscape covered by trees.Time Extent: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021Units: Percent (of each pixel that is covered by tree canopy)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate Systems: North America Albers Equal Area ConicMosaic Projection: WGS 1984 Web Mercator Auxiliary SphereExtent: CONUS, Southeastern Alaska, Hawaii, Puerto Rico and the US Virgin IslandsSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: April 1, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year changing appearance every year in the lower 48 states from 2011 to 2021. (In Alaska, Hawaii, Puerto Rico and the US Virgin Islands, the animation will only show a change between 2011 and 2016.) To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Alaska, Hawaii, Puerto Rico, and the US Virgin IslandsAt this time Alaska, Hawaii, Puerto Rico, and the US Virgin Islands do not have tree canopy cover for every year in the series like MRLC produced for the Lower 48 states. Furthermore, only a portion of coastal Southeastern Alaska from Kodiak to the Panhandle is available, but not the entire state. Alaska, Hawaii, Puerto Rico, and the US Virgin Islands have data in the series only from 2011 and 2016. Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThis service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/earthobs3/ESA_CCI_Land_Cover_Time_SeriesThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website. Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafter What can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190). Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University. Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf More technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc *Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterDisplays retaining walls maintained by the Seattle Department of Transportation.Views: Link, adds recommended definition query for general use: 'CURRENT_STATUS IN(INSVC, PLANNED) OR CURRENT_STATUS is empty string'Refresh Cycle: DailyFeature Class: SDOT.V_RETAININGWALL
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterThis layer contains Legal City boundaries within Los Angeles County. The Los Angeles County Department of Public Works provides the most current shape file of these city boundaries for download at its Spatial Information Library.Note: This boundary layer will not line up with the Thomas Brothers city layer. Principal attributes include:CITY_NAME: represents the city's name.CITY_TYPE: may be used for definition queries; "Unincorporated" or "City".FEAT_TYPE: contains the type of feature each polygon represents:Land - Use this value for your definition query if you want to see only land features on your map.Pier - One example is the Santa Monica Pier. Man-made features may be regarded as extensions of the coastline.Breakwater - Examples include the breakwater barriers that protect the Los Angeles Harbor.Water - Polygons with this attribute value represent internal navigable waters. Examples of internal waters are found in the Long Beach Harbor and in Marina del Rey.3NM Buffer - Per the Submerged Lands Act, the seaward boundaries of coastal cities and unincorporated county areas are three nautical miles (a nautical mile is 1852 meters) from the coastline.
Facebook
TwitterOne-eighth of the United States (247.3 million acres) is managed by the Bureau of Land Management. As part of the Department of the Interior, the agency oversees the 30 million acre National Landscape Conservation System, a collection of lands that includes 221 wilderness areas, 23 national monuments and 636 other protected areas. Bureau of Land Management Lands contain over 63,000 oil and gas wells and provide forage for over 18,000 grazing permit holders on 155 million acres of land. Dataset SummaryPhenomenon Mapped: United States lands managed by the Bureau of Land ManagementGeographic Extent: Contiguous United States and AlaskaData Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales larger than 1:2,000,000.Source: BLM Surface Management Agency layer, Rasterized by Esri from features May 2025.Publication Date: December 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Bureau of Land Management lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "bureau of land management" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "bureau of land management" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe U.S. Defense Department oversees the USA"s armed forces and manages over 30 million acres of land. With over 2.8 million service members and civilian employees the department is the world"s largest employer.Dataset SummaryPhenomenon Mapped: Lands managed by the U.S. Department of DefenseGeographic Extent: United States, Guam, Puerto RicoData Coordinate System: WGS 1984Visible Scale: The data is visible at all scalesSource: DOD Military Installations Ranges and Training Areas layer. Publication Date: May 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Department of Defense lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "department of defense" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "department of defense" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.