This webmap displays the percent of population 25 years and over whose highest education completed is bachelor's degree or higher. The webmap contains the following layers: City of Corona Limits, State Boundary, County Boundary and Tract Boundary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Students in geographic information systems and science (GIS) require significant experience outside of spatial analysis, cartography, and other traditional geographic topics. Computer science knowledge, skills, and practices exist as essential components of GIS practice, but coursework in this area is not universally offered in geography or GIS degrees. To support those interested in developing such courses, this paper describes the design and implementation of a server-focused course in WebGIS at University Texas A&M University. We provide an in-depth discussion of the equipment and resources required to build and operate an on-premise CyberGIS server infrastructure suitable for supporting such classes, providing comparisons with an equivalent solution built on Amazon Web Services (AWS). We consider the comparative costs of these systems, including benefits and drawbacks of each. In comparing these deployment options, we outline the technical expertise, monetary investments, operational expenses, and organizational strategies necessary to run server-based CyberGIS courses. Finally, we reflect on assignments and feedback from students and consider their experiences in a course of this nature. This article provides a resource for GIS instructors, academic departments, or other academic units to consider during infrastructure investment, curriculum redesign, the addition of courses in degree plans, or for the development of CyberGIS components.
A six degree grid in latitude and longitude covering the entire world
The Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (macv_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (macv_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (macv_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (macv_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (macv_geology_metadata.txt or macv_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data release for the geologic and structure maps of the Wallace 1 x 2 degrees quadrangle, Montana and Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1509-A (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,754 square kilometer, geologically complex Wallace quadrangle in northern Idaho and western Montana, at a publication scale of 1:250,000. The map covers primarily Lake, Mineral, Sanders and Shoshone Cou ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al.�(https://doi.org/10.1029/2007EO470006 at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones.�Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes. Growing degree days address an important component to general patterns of plant growth by accumulating the degree days across the growing season. This metric provides a level of detail related to defining the growing season potential. Here, we evaluate the accumulation of growing degree days at or above 5 �C (41 �F), assuming that limited growth occurs below 5 �C.�Specifically, we calculate growing degree days by first calculating the average daily temperature, based on the maximum and minimum projected daily temperature. We then subtract 5 �C from each mean value and then accumulate the positive difference values for all days within each year. The mean GDD values for the conterminous United States during the baseline period ranged from less than 100 to over 7,000 degree days, increasing from north to south with highest values in the Florida panhandle, southern Texas, southwestern Arizona, and southeastern California. GDD projections throughout the century suggest a ubiquitous increase across the United States with slightly less change in the Northeast and much greater increases throughout the southern United States under the high scenario. Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001
MGCP Cells - LINKS for download of 1 degree cell sized regions of MGCP vector data. Data is in an ESRI shape file format.Multinational Geospatial Co-production Program (MGCP) datasets covering the 1°x1° degree cells.United Kingdom and CanadaApproved for Public Release
The data release for the geologic map of the Challis 1 x 2 degrees quadrangle, Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations I-1819 (Fisher and others, 1992). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.4 million acre, geologically complex Challis 1 x 2 degrees quadrangle, at a publication scale of 1:250,000. The map covers primarily Boise, Custer, Lemhi and Valley Counties, but also includes minor parts of Elmore County. These GIS data supersede those in the interpretive report: Fisher, F.S., McIntyre, D.H., and Johnson, K.M., 1992, Geologic map of the Challis 1 degree x 2 degrees quadrangle, Idaho: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1819, scale 1:250,000, https://pubs.usgs.gov/imap/i-1819/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.
The data release for the geologic terranes of the Hailey 1 x 2 degrees quadrangle and the western part of the Idaho Falls 1 x 2 degrees quadrangle, south-central Idaho is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Bulletin 2064-A (Worl and Johnson, 1995). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plate and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 6.1 million-acre, geologically complex Hailey quadrangle and the western part of the Idaho Falls quadrangle, at a publication scale of 1:250,000. The map covers primarily Blaine, Camas, Custer and Elmore Counties, but also includes minor parts of Ada, Butte, Gooding, Lincoln, and Minidoka Counties. These GIS data supersede those in the interpretive report: Worl, R.G. and Johnson, K.M., 1995, Geology and mineral deposits of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho - an overview: U.S. Geological Survey, Bulletin 2064-A, scale 1:250,000, https://pubs.usgs.gov/bul/b2064-a/.
This layer provides slope values calculated dynamically from the elevation data (within the current extents) using the server-side slope function applied to a Terrain layer. The values are integer and represent the angle of the downward sloping terrain (0 to 90 degrees). Note slope is a function of the pixel size of the request, so at smaller scales the slope values are smaller as pixel sizes increase. WARNING: Slope is computed in the projection specified by the client software. The server resamples the elevation data to the requested projection and pixel size and then computes slope. Slope should be requested in a projection that maintains correct scale in x and y directions for the area of interest. Using geographic coordinates will give incorrect results. For the WGS84 Mercator and WGS Web Mercator (auxiliary sphere) projections used by many web applications, a correction factor has been included to correct for latitude-dependent scale changes.What can you do with this layer?Use for Visualization: No. This image service provides numeric values indicating terrain characteristics. Due to the limited range of values, this service is not generally appropriate for visual interpretation, unless the client application applies an additional color map. For use in visualization, use the Terrain: Slope Map. Use for Analysis: Yes. This layer provides numeric values indicating the average slope angle within a raster cell, calculated based on the defined cell size. Cell size has an effect on the slope values.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
The data release for the geologic and structure maps of the Kalispell 1 x 2 degrees quadrangle, Montana, and Alberta and British Columbia, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-2267 (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,436 square kilometer, geologically complex Kalispell 1 x 2 degrees Quadrangle, at a publication scale of 1:250,000. The map covers primarily Flathead and Lincoln Counties, but also includes minor parts of Glacier, Lake, and Sanders Counties. These GIS data supersede those in the interpretive report: Harrison, J.E., Cressman, E.R., Whipple, J.W., Kayser, H.Z., Derkey, P.D., and EROS Data Center, 2000, Geologic and structure maps of the Kalispell 1:250,000 quadrangle, Montana, and Alberta and British Columbia: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-2267, version 1.0, 23 p., scale 1:250,000, https://pubs.usgs.gov/imap/i2267/.
Raw 1/10th Degree Wind Force Probability data for all wind speeds.
ArcGIS for Schools Programme, Esri Ireland
The Digital Surficial Geologic-GIS Map of the Stroudsburg Quadrangle, New Jersey and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (stro_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (stro_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (stro_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (stro_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (stro_surficial_geology_metadata.txt or stro_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This GIS dataset shows where Geoscience Australia (GA) has acquired regional seismic reflection data as a part of Australian Government's Onshore Energy Security Program (OESP) in collaboration with State and Territory geological surveys, AuScope and Australian National Seismic Imaging Resource (ANSIR). During 2006-2011 GA collected over 6,500 line kilometres of new world-class seismic reflection data within Australia for use by industry and government. This dataset is generated from files containing CDP (Common Depth Point) coordinates of all OESP seismic surveys. The CDP line is a curve of best fit through the midpoints between sources and receivers, which optimises the fold of the data while minimising the subsurface area of reflections contributing to each nominal CDP. Each trace (source-receiver pair) is allocated to the nearest CDP bin to its midpoint. The interval between each CDP traces is 20 metres.
Climate plays a major role in determining the distribution of plants and animals. Bioclimatology, the study of climate as it affects and is affected by living organisms, is key to understanding the patterns of forests and deserts on the landscape, where productive agricultural lands may be found, and how changes in the climate will affect rare species. This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map.Dataset Summary This layer provides access to a 250m cell-sized raster with a bioclimatic stratification. The source dataset was a 30-arcsecond resolution raster (equivalent to 0.86 km2 at the equator or about a 920m pixel size). The layer has the following attributes: Temperature Description - Seven classes based on the number of growing degree days (the monthly mean temperature multiplied by number of days in the month summed for all months). The 1950 to 2000 monthly average temperature was used to calculate growing degree days. Values in this field and associated number of growing degree days are:Temperature DescriptionGrowing Degree DaysVery Hot9,000 – 13,500Hot7,000 – 9,000Warm4,500 – 7,000Cool2,500 – 4,500Cold1,000 – 2,500Very Cold300 – 1,000Arctic0 - 300Aridity Description - Six classes based on an index of aridity calculated by dividing precipitation by evapotranspiration. Precipitation and evapotranspiration are average values from 1950 to 2000.Aridity DescriptionAridity IndexVery Wet1.5 – 70Wet1.0 – 1.5Moist0.6 – 1.0Semi-dry0.3 – 0.6Dry0.1 – 0.3Very Dry0.01 – 0.1Bioclimate Class - a 2-part description that combines the value of the Temperature Description field and the Aridity Description field. The alias for this field is ELU Bioclimate Reclass. This layer was created by modifying the dataset documented in the publication: Metzger and others. 2012. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. What can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
This data set represents a 5-meter resolution LiDAR-derived degree slope layer for New Hampshire. It was generated from a statewide Esri Mosaic Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The Mosaic Dataset was used as input to the ArcGIS Spatial Analyst "Slope" geoprocessing tool which calculates the degree slope for each cell of the input raster, in this case, the statewide mosaic dataset.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geographic Information Systems (Gis). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geographic Information Systems (Gis). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This webmap displays the percent of population 25 years and over whose highest education completed is bachelor's degree or higher. The webmap contains the following layers: City of Corona Limits, State Boundary, County Boundary and Tract Boundary.