Facebook
TwitterThis dataset consists of points that represent recorded documents in the Delaware County Recorder's Plat Books, Cabinet/Slides and Instruments Records which are not represented by subdivision plats that are active. They are documents such as; vacations, subdivisions, centerline surveys, surveys, annexations, and miscellaneous documents within Delaware County, Ohio.
Facebook
TwitterThis data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
Twitterdescription: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection (Zone 15) and coordinate system.; abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection (Zone 15) and coordinate system.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.
This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This data is hosted at, and may be downloaded or accessed from PASDA, the Pennsylvania Spatial Data Access Geospatial Data Clearinghouse http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=291
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of Upper Delaware Scenic and Recreational River, New York and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (upde_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (upde_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (upde_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (upde_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (upde_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (upde_surficial_geology_metadata_faq.pdf). Please read the upde_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey, New York State Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (upde_surficial_geology_metadata.txt or upde_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis dataset consists of all map sheets within Delaware County, Ohio
Facebook
Twitterhttps://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
Aerial imagery is an essential tool for planning and analysis. It presents a comprehensive view of regional conditions. Having access to aerial imagery from various years provides the user with a chronological record of land use patterns. Aerials have been an important component of DVRPC's planning efforts for many years. They are also a popular source of information for consultants, developers, engineers, realtors, and the general public.
Orthoimagery consists of rectified or geometrically corrected aerial images that have been processed so that any distortions stemming from topographic relief and camera position are removed. This results in an accurate representation of the Earth's surface. Due to its uniform scale, distances between features can be measured on an orthoimage. Where these features touch the ground, they are shown in their true x and y map position.
Facebook
TwitterThis data set contains Delaware County's annexations and conforming boundaries from 1853 to present.
Facebook
Twitterdescription: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1); abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1)
Facebook
TwitterThe National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Dataum of 1983 (NSRS-2007).
This data is hosted at, and may be downloaded or accessed from PASDA, the Pennsylvania Spatial Data Access Geospatial Data Clearinghouse http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=2309
Facebook
TwitterThis data, indicating the sewer class for Mohawk River Watershed tax parcels, was collected by Stone Environmental, Inc. for the New York State Department of State with funds provided under Title 11 of the Environmental Protection Fund. Data are meant for watershed planning purposes only. Mohawk River Watershed Coalition of Conservation Districts does not take responsibility for the overall content and/or spatial accuracy of the tax parcel data available for download on this page.You should always verify actual map data and information. The limitations and accuracy level of the data should be accounted for before using them in any analyses and their validity cannot be guaranteed.Parcel boundary data was acquired by county offices. Individual County and Town files were compiled to create a seamless coverage of Tax Parcels. Areas of overlap were eliminated by clipping to adjacent county boundaries. Attribute information of interest, property class code, residential development from 1945 to present (year built), sewer service code, and water service codes were obtained from the New York Office of Real Property Services (ORPS, accessed in November 2011). Parcel boundaries and attribute information from ORPS were joined based on the municipality code and print key.Source Information:Albany: Albany County Real Property Tax Services. 2010 Albany County, NY parcel boundaries derived from AutoCAD MAP 3D tax maps; Delaware: Delaware County Planning Department. The license agreement between Delaware County and the Mohawk River Watershed prohibit the viewing of this data through a web mapping application; Fulton: Fulton County. The license agreement between Fulton County and the Mohawk River Watershed prohibit the viewing of this data through a web mapping application;Greene: Greene County; Hamilton: Hamilton County Real Property Tax Services; Herkimer: Herkimer Oneida Counties Comprehensive Planning Program, 2011; Public water and sewer were manually assigned to all City of Utica parcels. Public water and sewer were assigned to parcels within 500 feet of water and sewer lines for the City of Rome parcels.Lewis: Lewis County; The license agreement between Lewis County and the Mohawk River Watershed prohibit the viewing of this data through a web mapping application;Madison: Madison County;Montgomery: Montgomery County;Oneida: Herkimer Oneida Counties Comprehensive Planning Program, 2011;Otsego: Otsego County;Saratoga: Saratoga County, 2011;Schenectady: Schenectady County; Schoharie: Schoharie CountyView Dataset on the Gateway
Facebook
TwitterThe 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterDelaware County Drainage System.IMPORTANT: this layer was created from historic township-scale hard copy maps and is not warranted against the accuracy of the locations shown. You MUST contact the County Surveyor's office for detailed information on the location of legal rains - especially underground drainage systems. Underground systems shown in the dataset are not field located and cannot be used for excavation planning.
Facebook
TwitterA digital map of the thickness of the surficial unconfined aquifer, including from the land surface and unsaturated zone to the bottom of sediments of geologic units identified as part of the surficial aquifer, was produced to improve understanding of the hydrologic system in the Maryland and Delaware portions of the Delmarva Peninsula. The map is intended to be used in conjunction with other environmental coverages (such land use, wetlands, and soil characteristics) to provide a subsurface hydrogeologic component to studies of nitrate transport that have historically relied on maps of surficial features. It could also be used to study the transport of other water soluble chemicals. The map was made using the best currently available data, which was of varying scales. It was created by overlaying a high resolution land surface and bathymetry digital elevation model (DEM) on a digital representation of the base of the surficial aquifer, part of hydrogeologic framework, as defined by Andreasen and others (2013). Thickness was calculated as the difference between the top of land surface and the bottom of the surficial aquifer sediments, which include sediments from geologic formations of late-Miocene through Quaternary age. Geologic formations with predominantly sandy surficial sediments that comprise the surficial aquifer on the Delmarva Peninsula include the Parsonsburg Sand, Sinepuxent Formation (Fm.), and parts of the Omar Fm. north of Indian River Bay in Delaware, the Columbia Fm., Beaverdam Fm., and Pennsauken Fm. (Ator and others 2005; Owens and Denney, 1986; Mixon, 1985; Bachman and Wilson, 1984). Formations with mixed texture and sandy stratigraphy including the Scotts Corner Fm. and Lynch Heights Fm. in Delaware are also considered part of the surficial aquifer (Ramsey, 1997). Subcropping aquifers and confining beds underlie the surficial aquifer throughout the Peninsula and may increase or limit its thickness, respectively (Andreasen and others, 2013). Stream incision through the surficial aquifer into older fine-textured sediments is more common in the northern part of the Peninsula where confined aquifers and their confining beds subcrop beneath the surficial aquifer. The potential for nitrate transport is greatest where relatively coarse sediments of the unconfined surficial aquifer (such as sand and gravel), are present beneath uplands and streams. Where these sediments are truncated and the streambed is incised into underlying fine-textured sediments, the potential for nitrate transport is much less and typically limited to stream-bank seeps that flow across the floodplain. In parts of south-central Maryland and southern Delaware the surficial aquifer sediments are complex with surficial sandy sediments generally less than 20 ft thick (indicated as 19 ft on the map). They include the Parsonsburg Sand and some surficial sandy facies of the Omar Fm. underlain by predominantly fine-textured sediments of the Walston Silt and Omar Fm. (Denney and others, 1979; Owens and Denney, 1979). Even though the surficial aquifer is relatively thin in this area, extensive ditching of flat poorly drained farmland allows seasonal transport of nitrate from groundwater to streams when the water table is above the base of the ditches (Lindsey and others, 2003). Geologic units of the Coastal Lowlands that surround the Peninsula are relatively thin in many areas and are primarily composed of fine-grained estuarine deposits with some coarse-textured sediments, in particular remnant beach-ridge and dune deposits (Ator and others, 2005). The Kent Island Fm. (Owens and Denney, 1986), which is part of the Coastal Lowlands on the western side of the Peninsula, has predominantly fine-grained sediments and is not included in the surficial aquifer in Maryland, as defined by Bachman and Wilson (1984); the surficial aquifer is shown to have 0 ft thickness on the map in the area mapped as Kent Island Fm. Also shown on the map as 0 ft thickness are areas in the northern most portion of the peninsula in New Castle and Cecil counties where surficial aquifer sediments are not present and other areas such as stream valleys where surficial aquifer sediments are also not present. Nitrate transport through groundwater to surface water is limited in the areas with fine-grained sediments at or near the land surface that promote denitrification in groundwater (Ator and others, 2005). Where extensive tidal marshes overly the Coastal Lowlands they also limit nitrate transport to surface waters. Available sub-regional or county-scale geologic maps produced by the Delaware and Maryland State Geologic Surveys should be consulted when using this product (www.dgs.udel.edu; www.mgs.md.gov). Local-scale maps will be particularly important in understanding areas such as where the surficial aquifer is completely truncated or very thin and overlies confining beds or confined aquifers, in the Coastal Lowlands, and in south-central Maryland and Delaware. References: Andreasen, D.C., Staley, A.W., and Achmad, Grufon, 2013. Maryland Coastal Plain Aquifer Information system: Hydrogeological Framework: Maryland Department of Natural Resources Resource Assessment Service Maryland Geological Survey Open-File Report No. 12-02-20,121 p. Ator, S.W., Denver, J.M., Krantz D.E., Newell, W.L., and Martucci, S.K., 2005. A surficial hydrogeologic framework for the Mid-Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 1680, 44 p., 4 plates. Bachman, L.J. and Wilson, J.M., 1984. The Columbia Aquifer of the Eastern Shore of Maryland: Maryland Geological Survey Report of Investigations No. 40, 144 p. Denney, C.S., Owens, J.P. and Sirkin, L.A., 1979. The Parsonsburg Sand in the Central Delmarva Peninsula, Maryland and Delaware: U.S. Geological Survey Professional Paper 1067-B, 16 p. Lindsey, B.D., Phillips, S.W., Donnelly, C.A., Speiran, G.K., Plummer, L.N., Böhlke, J.K., Focazio, M.J., Burton, W.C., and Busenberg, Eurybiades, 2003. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed: U.S. Geological Survey Water-Resources Investigations Report 03-4035, 201 p. Mixon, R.B., 1985. Stratigraphic and geomorphic framework of the upper most Cenozoic deposits in the southern Delmarva Peninsula, Virginia and Maryland: U.S. Geological Survey Professional Paper 1067-G, 53 p. Owens, J.P. and Denney, C.S., 1979. Upper Cenozoic Deposits of the Central Delmarva Peninsula, Maryland and Delaware: U.S. Geological Survey Professional Paper 1067-A, 28 p. --------, 1986. Geologic map of Dorchester County, Maryland: Maryland Geological Survey, 1 sheet, scale 1:62,500. Ramsey, K.W., 1997. Geology of the Milford and Mispillion River Quadrangles, Delaware: Delaware Geological Survey Report of Investigations No. 55, 40 p.
Facebook
TwitterThe Philadelphia, PA Meter-Scale Urban Land Cover (MULC) dataset comprises 7184 km2 around the city of Philadelphia and surrounding land in parts of fourteen counties within four states (PA, DE, NJ, MD): New Castle County in Delaware and Cecil County Maryland; Bucks, Chester, Lancaster, Montgomery, Philadelphia, and Delaware Counties in Pennsylvania; and Burlington, Mercer, Camden, Gloucester, Salmen and Atlantic Counties in New Jersey. These MULC data and maps were derived from several sources from multiple years: leaf-off LiDAR; 1-m pixel, four-band (red, green, blue, and near-infrared) leaf-on aerial photography acquired from the United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP); 1-ft pixel orthoimagery; additional leaf-on and leaf-off imagery as well as ancillary vector data (e.g., roads, building footprints.). Ten land cover classes were mapped: Water, Impervious Surfaces, Soil/Barren, Tree/Forested, Shrub, Grass/Herbaceous NonWoody Vegetation, Agriculture, Orchard, and Wetlands (Woody and Emergent). Wetlands were delineated using the best available existing wetlands data, which was a National Wetlands Inventory (NWI) layer. An analysis of 600 completely random and 251 stratified random photo-interpreted land cover reference points yielded a simple overall user's accuracy (MAX) of 78% and an overall fuzzy user's accuracy (RIGHT) of 86% (see confusion matrices below). This dataset was produced by the University of Vermont Spatial Analysis Laboratory, the United States Forest Service Urban Tree Canopy (UTC) assessment program, and the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Facebook
Twitter
Facebook
TwitterDelaware County Council Districts 2022
Facebook
TwitterThis dataset consists of all the farmlots in both the US Military and the Virginia Military Survey Districts of Delaware County.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipLarge scale development refers to heavy industry, large buildings, etc. This map was produced in cooperation with City of Delaware officials. It is a combination of data on unified class (a measure of bearing strength), slope, shrink-swell potential, depth to bedrock, and type of bedrock. Consult the publication "Land Capability Analysis in Delaware County," available from the ODNR, Division of Real Estate and Land Management for specific information concerning what constitutes a slight, moderate, or severe limitation.
This map is not meant to substitute for an onsite investigation.
Explanation of abbreviations in legend: mod-moderate, sev-severe, br-depth and type of bedrock.
Soils used in this analysis were digitized from the paper original soil survey sheets. These sheets were taped together to form an area covering each of the USGS 7.5 minute quadrangle maps in the county. The areas for each quadrangle were then digitized using run-length encoding technique sampling along horizontal lines which represented the midline of cells with a height of 250 feet. The measurement increment along these lines was one decafoot (10 feet). The quadrangle files were then merged into a county file which has subsequently been converted to Arc/Info format.
The user should bear in mind that this coverage is only an approximation of the soil survey and should not be used for site specific analysis.
Additional details of the digitizing process are available upon request.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov Data Update Frequency: As Needed
Facebook
TwitterThe Response Outreach Area Mapper (ROAM) application was developed to make it easier to identify hard-to-survey areas and to provide a socioeconomic and demographic characteristic profile of these areas using American Community Survey (ACS) estimates available in the Planning Database. Learning about each hard-to-survey area allows the U.S. Census Bureau to create a tailored communication and partnership campaign, and to plan for field resources including hiring staff with language skills. These and other efforts can improve response rates. To learn more see The Low Response Score (LRS): A Metric to Locate, Predict, and Manage Hard-to-Survey Populations and The 2020 Census at a Glance: Plan Census Outreach with the Response Outreach Area Mapper tool.
Facebook
TwitterThis dataset consists of points that represent recorded documents in the Delaware County Recorder's Plat Books, Cabinet/Slides and Instruments Records which are not represented by subdivision plats that are active. They are documents such as; vacations, subdivisions, centerline surveys, surveys, annexations, and miscellaneous documents within Delaware County, Ohio.