Web map used in Delaware County GIS Data Extract application that allows users to extract Delaware County, Ohio GIS data in various formats.
The Digital Surficial Geologic-GIS Map of Delaware Water Gap National Recreation Area and Vicinity, New Jersey, Pennsylvania and New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (dewa_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (dewa_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (dewa_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (dewa_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey, Pennsylvania Geological Survey, New York State Museum and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (dewa_surficial_geology_metadata.txt or dewa_surficial_geology_metadata_faq.pdf). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
DVRPC’s 2023 land use file is based on digital orthophotography created from aerial surveillance completed in the spring of 2023. This dataset supports many of DVRPC's planning analysis goals.Every five years, since 1990, the Delaware Valley Regional Planning Commission (DVRPC) has produced a GIS Land Use layer for its 9-county region.lu23cat: Land use main category two-digit code.lu23catn: Land use main category name.lu23catlu23catn1Residential3Industrial4Transportation5Utility6Commercial7Institutional8Military9Recreation10Agriculture11Mining12Wooded13Water14Undevelopedlu23sub: Land use subcategory five-digit code.(refer to this data dictionary for code description)lu23subn: Land use subcategory name.lu23dev: Development status.mixeduse: Mixed-Use status (Y/N). Features belonging to one of the Mixed-Use subcategories (Industrial: Mixed-Use, Multifamily Residential: Mixed-Use, or Commercial: Mixed-Use).acres: Area of feature, in US acres.geoid: 10-digit geographic identifier. In all DVRPC counties other than Philadelphia, a GEOID is assigned by municipality. In Philadelphia, it is assigned by County Planning Area (CPA).state_name, co_name, mun_name: State name, county name, municipal/CPA name. In Philadelphia, County Planning Area (CPA) names are used in place of municipal names.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
The Digital Surficial Geologic-GIS Map of Upper Delaware Scenic and Recreational River, New York and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (upde_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (upde_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (upde_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (upde_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (upde_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (upde_surficial_geology_metadata_faq.pdf). Please read the upde_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey, New York State Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (upde_surficial_geology_metadata.txt or upde_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
These contours are derived from the bare-earth 2014 LIDAR Digital Elevation Model (DEM) surface but are adjusted to conform to features in the National Hydrologic Dataset (NHD) for the purpose of generating aesthetically pleasing maps and figures from the GIS-derived contours.
Environmental Sensitivity Index (ESI) data characterize the marine and coastal environments and wildlife based on sensitivity to spilled oil. There are three main components: shoreline habitats, sensitive biological resources, and human-use resources. The shoreline and intertidal areas are ranked based on sensitivity determined by: (1) Shoreline type (substrate, grain size, tidal elevation, origin); (2) Exposure to wave and tidal energy; (3) Biological productivity and sensitivity; and (4) Ease of cleanup. The biology layers focus on threatened/endangered species, areas of high concentration and areas where sensitive life stages may occur. Supporting data tables provide species/location-specific abundance, seasonality, status, life history, and source information Human use resources mapped include managed areas (parks, refuges, critical habitats, etc) and resources that may be impacted by oiling and/or clean-up, such as beaches, archaeological sites marinas etc. ESIs are available for the majority of the US coastline, as well as the US territories. ESI data are available in a variety of GIS formats as well as PDF maps.For more information go to or to download complete ESI data sets go to: https://response.restoration.noaa.gov/esiFor the full metadata record please go to: https://www.fisheries.noaa.gov/inport/item/53986For online ESI query tools, see the Environmental Response Management Application (ERMA): https://response.restoration.noaa.gov/resources/maps-and-spatial-data/environmental-response-management-application-erma
This data comes directly from TSDM so changes are reflected when they are posted in TSDM
These data were automated to provide an accurate high-resolution historical shoreline of Delaware Bay, DE suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://res1inportd-o-tnmfsd-o-tnoaad-o-tgov.vcapture.xyz/inport/item/39808
Delaware School District Boundaries
The features layers include Daycare Home Provider List, Delaware Grown locations, Food Bank of Delaware Sites and Programs, Food Pantries without School information, and Delaware Open Summer Food Service Program.
These data provide an accurate high-resolution shoreline compiled from imagery of DELAWARE RIVER, PHILADELPHIA TO TRENTON . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartograph...
A GIS database of geologic units and structural features in Delaware, with lithology, age, data structure, and format written and arranged just like the other states.
Address identified as unserved under FCC 477 that will be funded under a program other than ARPA.
This is a tool to help Delaware citizens determine the districts in which they reside, based upon their address. The tool returns district information for Senate, Representative, Election, School, County Council, Levy Court, and Wilmington City Council.
Links to Delaware geologic map datasets and water-table datasets; includes GIS-readable formats.
These data provide an accurate high-resolution shoreline compiled from imagery of CHESAPEAKE AND DELAWARE CANAL . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Every five years, since 1990, the Delaware Valley Regional Planning Commission has produced a GIS Land Use layer for its 9-county region. In 2000, digital orthophotography was flown by DVRPC. Utilizing this orthophotography, all Land Use annotation and digitizing was performed on-screen, or "heads-up," a first at DVRPC. Digitizing was done using ESRI ArcGIS 8 software at a 1:2400 (1 inch = 200 feet) scale.
Geospatial data about Delaware Census Tracts 2020. Export to CAD, GIS, PDF, CSV and access via API.
Service includes the following data: Forest Cover 2007, Pine Plantations, State Forest locations, and Urban Tree Canopy.
Web map used in Delaware County GIS Data Extract application that allows users to extract Delaware County, Ohio GIS data in various formats.