This is a PDF format map of the country, as released by the United Nations.
This is a PDF format map of the country, as released by the United Nations.
This is a PDF format map of the country, as released by the United Nations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Democratic Republic of the Congo. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Age and sex structures: WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Tatem et al and Pezzulo et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020 structured by male/female and 5-year age classes (plus a <1 year class). These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map population age and sex counts for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.
These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.
Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.
Hazards:
Exposure:
The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.
To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.
These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:
snkit
helps clean network data
nismod-snail
is designed to help implement infrastructure
exposure, damage and risk calculations
The open-gira
repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.
For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).
References
This map highlights 8962 stations with monthly discharge data, including data derived daily up to 20 December 2013. The GRDB (Global Runoff DataBase) is built on an initial dataset collected in the early 1980s from the responses to WMO (World Meteorological Organization request to its member countries to provide a global hydrological data set to complement a specific set of atmospheric data in the framework of the First Global GARP Experiment (FCGE). The initial dataset of monthly river discharge data over a period of several years around 1980 was supplemented with the UNESCO monthly river discharge data collection 1965-85. Today the database comprises discharge data of nearly 9.000 gauging stations from all over the world. Since 1993 the total number of station-years has increased by a factor of around 10.Credits and partnerships:OSU - College of Earth, Ocean and Atmospheric SciencesCarniege Corporation of New YGloabl orkNASCE - Northwest Alliance for Computational Science & EngineeringInternational Water Management InstituteUNESCO - United Nations Educational, Scientific and Cultural OrganisationUSGS - United States Geological Survey
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This is a PDF format map of the country, as released by the United Nations.