This product will include topics such as age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure. Some tables will be iterated by race and ethnicity.
A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.
Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.
Use cases for the Global Census Database (Consumer Demographic Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Real Estate Data Estimations
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Census data export methodology
Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our demographic databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
The following datasets are based on the children and youth (under age 21) beneficiary population and consist of aggregate Mental Health Service data derived from Medi-Cal claims, encounter, and eligibility systems. These datasets were developed in accordance with California Welfare and Institutions Code (WIC) § 14707.5 (added as part of Assembly Bill 470 on 10/7/17). Please contact BHData@dhcs.ca.gov for any questions or to request previous years’ versions of these datasets. Note: The Performance Dashboard AB 470 Report Application Excel tool development has been discontinued. Please see the Behavioral Health reporting data hub at https://behavioralhealth-data.dhcs.ca.gov/ for access to dashboards utilizing these datasets and other behavioral health data.
As of January 2025, users aged 25 to 34 years made up Facebook's largest audience in the United States, accounting for 24.2 percent of the social network's user base, with 12.3 percent of those users being women. Overall, 9.7 percent of users aged 35 to 44 years were women, and 9.3 percent were men. How many people use Facebook in the United States? Facebook is by far the most used social network in the world and finds a huge share of its audience in the United States. Facebook’s U.S. audience size comes second only to India. In 2023, there were over 246 million Facebook users in the U.S. By 2028, it is estimated that around 263 million people in the U.S. will be signed up for the platform. How do users in the United States view the platform? Although Facebook is widely used and very popular with U.S. consumers, there are issues of trust with its North American audience. As of November 2021, 72 percent of respondents reported that they did not trust Facebook with their personal data. Despite having privacy doubts, a May 2022 survey found that 20 percent of adults had a very favorable opinion of Facebook, and one-third held a somewhat positive view of the platform.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Adrian population by year. The dataset can be utilized to understand the population trend of Adrian.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This data asset was created in response to House Report 117-401, which stated, "The Committee directs the USAID Administrator, in consultation with the Director of the Office of Personnel Management and the Director of the Office of Management and Budget, to submit a report to the appropriate congressional committees, not later than 180 days after enactment of this Act, on USAID's workforce data that includes disaggregated demographic data and other information regarding the diversity of the workforce of USAID. Such report shall include the following data to the maximum extent practicable and permissible by law: 1) demographic data of USAID workforce disaggregated by grade or grade-equivalent; 2) assessment of agency compliance with the Equal Employment Opportunity Commission Management Directive 715; and 3) data on the overall number of individuals who are part of the workforce, including all U.S. Direct Hires, personnel under personal services contracts, and Locally Employed staff at USAID. The report shall also be published on a publicly available website of USAID in a searchable database format." This data asset fulfills the final part of this requirement, to publish the data in a searchable database format. The data are compiled from USAID's 2021 MD-715 report, available at https://www.usaid.gov/reports/md-715. The original data source is the system National Finance Center Insight owned by the Treasury Department.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The 60 years and over column of data refers to the age of the householder for the estimates of households, occupied housing units, owner-occupied housing units, and renter-occupied housing units lines..The age specified on the population 15 years and over, population 25 years and over, population 30 years and over, civilian population 18 years and over, civilian population 5 years and over, population 1 years and over, population 5 years and over, and population 16 years and over lines refer to the data shown in the "Total" column while the second column is limited to the population 60 years and over..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The 2023-24 Lesotho Demographic and Health Survey (2023-24 LDHS) is designed to provide data for monitoring the population and health situation in Lesotho. The 2023-24 LDHS is the 4th Demographic and Health Survey conducted in Lesotho since 2004.
The primary objective of the 2023–24 LDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the LDHS collected information on fertility levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutrition, childhood and maternal mortality, maternal and child health, awareness and behaviour regarding HIV and AIDS and other sexually transmitted infections (STIs), other health issues (including tuberculosis) and chronic diseases, adult mortality (including maternal mortality), mental health and well-being, and gender-based violence. In addition, the 2023–24 LDHS provides estimates of anaemia prevalence among children age 6–59 months and adults as well as estimates of hypertension and diabetes among adults.
The information collected through the 2023–24 LDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of Lesotho’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Lesotho.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, all men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023–24 LDHS is based on the 2016 Population and Housing Census (2016 PHC), provided by the Lesotho Bureau of Statistics (BoS). The frame file is a complete list of all census enumeration areas (EAs) within Lesotho. An EA is a geographic area, usually a city block in an urban area or a village in a rural area, consisting of approximately 100 households. In rural areas, it may consist of one or more villages. Each EA serves as a counting unit for the population census and has a satellite map delineating its boundaries, with identification information and a measure of size, which is the number of residential households enumerated in the 2016 PHC. Lesotho is administratively divided into 10 districts; each district is subdivided into constituencies and each constituency into community councils.
The 2023–24 LDHS sample of households was stratified and selected independently in two stages. Each district was stratified into urban, peri-urban, and rural areas; this yielded 29 sampling strata because there are no peri-urban areas in Butha-Buthe. In the first sampling stage, 400 EAs were selected with probability proportional to EA size and with independent selection in each sampling stratum. A household listing operation was carried out in all of the selected sample EAs, and the resulting lists of households served as the sampling frame for the selection of households in the next stage.
In the second stage of selection, a fixed number of 25 households per cluster (EA) were selected with an equal probability systematic selection from the newly created household listing. All women age 15–49 who were usual members of the selected households or who spent the night before the survey in the selected households were eligible for the Woman’s Questionnaire. In every other household, all men age 15–59 who were usual members of the selected households or who spent the night before the survey in the selected households were eligible for the Man’s Questionnaire. All households in the men’s subsample were eligible for the Biomarker Questionnaire.
Fifteen listing teams, each consisting of three listers/mappers and a supervisor, were deployed in the field to complete the listing operation. Training of the household listers/mappers took place from 28 to 30 June 2024. The household listing operation was carried out in all of the selected EAs from 5 to 26 July 2024. For each household, Global Positioning System (GPS) data were collected at the time of listing and during interviews.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2023–24 LDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Lesotho and were translated into Sesotho. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
The survey data were collected using tablet computers running the Android operating system and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. English and Sesotho questionnaires were used for collecting data via CAPI. The CAPI programmes accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the tablets by each interviewer. Supervisors downloaded interview data to their tablet, checked the data for completeness, and monitored fieldwork progress.
Each day, after completion of interviews, field supervisors submitted data to the central server. Data were sent to the central office via secure internet data transfer. The data processing managers monitored the quality of the data received and downloaded completed data files for completed clusters into the system. ICF provided the CSPro software for data processing and technical assistance in the preparation of the data capture, data management, and data editing programmes. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of the tablets was provided by ICF.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Secondary data covered the entire population of Portuguese municipalities on the transparency index and demography factors from 2015 to 2017.
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
This layer shows race and ethnicity data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P5, P9 Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey. The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.
The Bangladesh Demographic and Health Survey (BDHS) is the first of this kind of study conducted in Bangladesh. It provides rapid feedback on key demographic and programmatic indicators to monitor the strength and weaknesses of the national family planning/MCH program. The wealth of information collected through the 1993-94 BDHS will be of immense value to the policymakers and program managers in order to strengthen future program policies and strategies.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - asses the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the BDHS was designed to: - provide data on the family planning and fertility behavior of the Bangladesh population to evaluate the national family planning programs, - measure changes in fertility and contraceptive prevalence and, at the same time, study the factors which affect these changes, such as marriage patterns, urban/rural residence, availability of contraception, breastfeeding patterns, and other socioeconomic factors, and - examine the basic indicators of maternal and child health in Bangladesh.
National
Sample survey data
Bangladesh is divided into five administrative divisions, 64 districts (zillas), and 489 thanas. In rural areas, thanas are divided into unions and then mauzas, an administrative land unit. Urban areas are divided into wards and then mahallas. The 1993-94 BDHS employed a nationally-representative, two-stage sample. It was selected from the Integrated Multi-Purpose Master Sample (IMPS), newly created by the Bangladesh Bureau of Statistics. The IMPS is based on 1991 census data. Each of the five divisions was stratified into three groups: 1) statistical metropolitan areas (SMAs) 2) municipalities (other urban areas), and 3) rural areas. In rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 census frame, the units for the BDHS were sub-selected from the IMPS with equal probability to make the BDHS selection equivalent to selection with probability proportional to size. A total of 304 primary sampling units were selected for the BDHS (30 in SMAs, 40 in municipalities, and 234 in rural areas), out of the 372 in the IMPS. Fieldwork in three sample points was not possible, so a total of 301 points were covered in the survey.
Since one objective of the BDHS is to provide separate survey estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal Division und for municipalities relative to the other divisions, SMAs, and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
After the selection of the BDHS sample points, field staffs were trained by Mitra and Associates and conducted a household listing operation in September and October 1993. A systematic sample of households was then selected from these lists, with an average "take" of 25 households in the urban clusters and 37 households in rural clusters. Every second household was identified as selected for the husband's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed the husband of any woman who was successfully interviewed. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 4,200 of their husbands.
Note: See detailed in APPENDIX A of the survey final report.
Data collected for women 10-49, indicators calculated for women 15-49. A total of 304 primary sampling units were selected, but fieldwork in 3 sample points was not possible.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Husbands' Questionnaire, and a Service Availability Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. Additions and modifications to the model questionnaires were made during a series of meetings with representatives of various organizations, including the Asia Foundation, the Bangladesh Bureau of Statistics, the Cambridge Consulting Corporation, the Family Planning Association of Bangladesh, GTZ, the International Centre for Diarrhoeal Disease Research (ICDDR,B), Pathfinder International, Population Communications Services, the Population Council, the Social Marketing Company, UNFPA, UNICEF, University Research Corporation/Bangladesh, and the World Bank. The questionnaires were developed in English and then translated into and printed in Bangla.
The Household Questionnaire was used to list all the usual members and visitors of selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age three, - Marriage, - Fertility preferences, and - Husband's background and respondent's work.
The Husbands' Questionnaire was used to interview the husbands of a subsample of women who were interviewed. The questionnaire included many of the same questions as the Women's Questionnaire, except that it omitted the detailed birth history, as well as the sections on maternal care, breastfeeding and child health.
The Service Availability Questionnaire was used to collect information on the family planning and health services available in and near the sampled areas. It consisted of a set of three questionnaires: one to collect data on characteristics of the community, one for interviewing family welfare visitors and one for interviewing family planning field workers, whether government or non-governent supported. One set of service availability questionnaires was to be completed in each cluster (sample point).
All questionnaires for the BDHS were returned to Dhaka for data processing at Mitra and Associates. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing inconsistencies found by the computer programs. One senior staff member, 1 data processing supervisor, questionnaire administrator, 2 office editors, and 5 data entry operators were responsible for the data processing operation. The data were processed on five microcomputers. The DHS data entry and editing programs were written in ISSA (Integrated System for Survey Analysis). Data processing commenced in early February and was completed by late April 1994.
A total of 9,681 households were selected for the sample, of which 9,174 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant, or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 9,255 households that were occupied, 99 percent were successfully interviewed. In these households, 9,900 women were identified as eligible for the individual interview and interviews were completed for 9,640 or 97 percent of these. In one-half of the households that were selected for inclusion in the husbands' survey, 3,874 eligible husbands were identified, of which 3,284 or 85 percent were interviewed.
The principal reason for non-response among eligible women and men was failure to find them at home despite repeated visits to the household. The refusal rate was very low (less than one-tenth of one percent among women and husbands). Since the main reason for interviewing husbands was to match the information with that from their wives, survey procedures called for interviewers not to interview husbands of women who were not interviewed. Such cases account for about one-third of the non-response among husbands. Where husbands and wives were both interviewed, they were interviewed simultaneously but separately.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey final report.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions
Woman, Birth, Child, Birth, Man, Household Member
Women age 15-49, Births, Children age 0-4, Men age 15-59, All persons
Demographic and Household Survey [hh/dhs]
MICRODATA SOURCE: Central Statistical Agency [Ethiopia] and ICF International.
SAMPLE UNIT: Woman SAMPLE SIZE: 16515
SAMPLE UNIT: Birth SAMPLE SIZE: 45540
SAMPLE UNIT: Child SAMPLE SIZE: 11654
SAMPLE UNIT: Man SAMPLE SIZE: 14110
SAMPLE UNIT: Member SAMPLE SIZE: 77744
Face-to-face [f2f]
Selected demographic, social, economic, and housing estimates data by community district/PUMA (Public Use Micro Data Sample Area). Three year estimates of population data from the Census Bureau's American Community Survey
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Nome population by year. The dataset can be utilized to understand the population trend of Nome.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..Source: U.S. Census Bureau, 2020 Census Demographic and Housing Characteristics File (DHC)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Contains raw data, processed data, code, results and model outputs related to the paper, published in PNAS
The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.
The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5
The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).
The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.
For further details on sample design, see APPENDIX A of the final report.
Face-to-face computer-assisted interviews [capi]
Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.
DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.
From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.
A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
This product will include topics such as age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure. Some tables will be iterated by race and ethnicity.