100+ datasets found
  1. NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED...

    • datalumos.org
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Education. Institute of Education Sciences. National Center for Education Statistics (2025). NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED Geodata [Dataset]. http://doi.org/10.3886/E218863V1
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    United States Department of Educationhttp://ed.gov/
    Institute of Education Scienceshttp://ies.ed.gov/
    National Center for Education Statisticshttps://nces.ed.gov/
    Authors
    United States Department of Education. Institute of Education Sciences. National Center for Education Statistics
    License

    https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm

    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACS

  2. m

    Lisbon, Portugal, hotel’s customer dataset with three years of personal,...

    • data.mendeley.com
    Updated Nov 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuno Antonio (2020). Lisbon, Portugal, hotel’s customer dataset with three years of personal, behavioral, demographic, and geographic information [Dataset]. http://doi.org/10.17632/j83f5fsh6c.1
    Explore at:
    Dataset updated
    Nov 18, 2020
    Authors
    Nuno Antonio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Portugal, Lisbon
    Description

    Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.

  3. Demographics API - By Geography Type and Geography ID

    • datasets.ai
    • catalog.data.gov
    • +1more
    23
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Commerce (2024). Demographics API - By Geography Type and Geography ID [Dataset]. https://datasets.ai/datasets/demographics-api-by-geography-type-and-geography-id
    Explore at:
    23Available download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    Authors
    Department of Commerce
    Description

    This API returns a search for the demographic information for a particular geography type and geography ID

  4. a

    Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy

    • hub.arcgis.com
    • africageoportal.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy [Dataset]. https://hub.arcgis.com/maps/ffd1b8a7ffbf4b758fc15dcc0a6060c3
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    (by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/

  5. g

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datastore.gapmaps.com
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    United States, Canada
    Description

    GapMaps GIS Data sourced from Applied Geographic Solutions includes over 40k Demographic variables across topics including estimates & projections on population, demographics, neighborhood segmentation, consumer spending, crime index & environmental risk available at census block level.

  6. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  7. a

    Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy

    • africageoportal.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy [Dataset]. https://www.africageoportal.com/maps/ffd1b8a7ffbf4b758fc15dcc0a6060c3
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    (by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/

  8. a

    Demographic by Race 2021 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Demographic by Race 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b1651445db7a419794f1dc107968d885
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  9. USA Demographics - Human Geography GeoInquiries 2020

    • geoinquiries-education.hub.arcgis.com
    • hub.arcgis.com
    Updated Aug 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2018). USA Demographics - Human Geography GeoInquiries 2020 [Dataset]. https://geoinquiries-education.hub.arcgis.com/maps/570fdb49796243bd8a05fc6e1df4c417
    Explore at:
    Dataset updated
    Aug 23, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    This map is for human geography classrooms and tied to the AP benchmarks. Learn more about GeoInquiries at www.esri.com/geoinquiries

  10. ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05)

    • catalog.data.gov
    • data-nces.opendata.arcgis.com
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-demographic-characteristics-dp05-7a484
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  11. d

    Spatiotemporal historical datasets on micro-level for geocoded individuals...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hedefalk, Finn; Patrick Svensson; Lars Harrie (2023). Spatiotemporal historical datasets on micro-level for geocoded individuals in five Swedish parishes, 1813-1914 [Dataset]. http://doi.org/10.7910/DVN/Z0AHAL
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hedefalk, Finn; Patrick Svensson; Lars Harrie
    Time period covered
    Jan 1, 1800 - Jan 1, 1914
    Description

    The datasets presented here enable historical longitudinal studies of micro-level geographic factors in a rural setting. These types of datasets are new, as historical demography studies have generally failed to properly include the micro-level geographic factors. Our datasets describe the geography over five Swedish rural parishes and a geocoded population (at the property unit level) for this area for the time period 1813-1914. The population is a subset of the Scanian Economic Demographic Database (SEDD). The geographic information includes the following feature types: property units, wetlands, buildings, roads and railroads. The property units and wetlands are stored in object-lifeline time representations (information about creation, changes and ends of objects are recorded in time), whereas the other feature types are stored as snapshots in time. Thus, the datasets present one of the first opportunities to study historical spatio-temporal patterns at the micro-level.

  12. a

    Demographic by Race 2023 (all geographies, statewide)

    • opendata.atlantaregional.com
    • hub.arcgis.com
    • +1more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic by Race 2023 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/5d3ef7696cf1440faad2d512c3d10297
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  13. California Population Trends by Geography

    • data.cnra.ca.gov
    csv, website
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). California Population Trends by Geography [Dataset]. https://data.cnra.ca.gov/dataset/population-trends-by-geography
    Explore at:
    website, csv(317335)Available download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    California
    Description

    This dataset provides population estimate trends from 1998 to the current year for each of California’s 58 counties, further disaggregated by Detailed Analysis Units (DAUs) - the smallest geographic units historically used by the California Department of Water Resources for water planning as part of the California Water Plan. DAUs are subdivisions of Planning Areas and often align with county boundaries, although a single DAU may span multiple counties. They have traditionally supported water demand estimates based on crop and land use types.

    The population estimates were developed using U.S. Bureau Census 2000, 2010 and 2020 data. Throughout the estimation process, intermediate results were reviewed and adjusted as needed, with professional judgment applied to smooth trends where appropriate.

    Since the California Water Plan is retiring DAUs as its planning and analysis framework, future updates to this dataset will transition away from DAU based geography. Instead, population estimates will be provided based on other geographic units, such as the 8-digit Hydrologic Units (HUC8) defined by the U.S. Geological Survey’s Watershed Boundary Dataset.

    A dashboard is available for visualizing historical population trends by county and DAU.

  14. 04 - USA demographics - Esri GeoInquiries collection for Human Geography

    • library.ncge.org
    • geoinquiries-education.hub.arcgis.com
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 04 - USA demographics - Esri GeoInquiries collection for Human Geography [Dataset]. https://library.ncge.org/documents/NCGE::04-usa-demographics-esri-geoinquiries-collection-for-human-geography/about
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Area covered
    United States
    Description

    Students will explore U.S. census data to see the spatial differences in the United States’ population. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes:· Unit 2, A1: Geographical analysis of population (density, distribute and scale)· Unit 2, A3: Geographical analysis of population (composition: age, sex, income, education and ethnicity)· Unit 2, A4: Geographical analysis of population (patterns of fertility, mortality and health)Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  15. D

    SFDPH reporting - geography population estimates

    • data.sfgov.org
    application/rdfxml +5
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    American Community Survey (2025). SFDPH reporting - geography population estimates [Dataset]. https://data.sfgov.org/w/35v5-seg9/ikek-yizv?cur=vUmhQtB0oWV&from=root
    Explore at:
    csv, xml, application/rssxml, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    American Community Survey
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This filtered view contains the population estimates for San Francisco geographic units from the U.S. Census Bureau’s American Community Survey that are used in the Department of Public Health’s public reporting. Details on the underlying geographic unit data from the American Community Survey are available below. The geographies included are census tracts, analysis neighborhoods, and zip codes (ZCTA). We are using 2016-2020 ACS estimates in our public reporting, but additional years are included in this view as well for historical purposes.

    The COVID-19 reports which use this data are available on SF.gov by clicking here.

    San Francisco Population and Demographic Census data dataset filtered on:

    • "geography" =
      • 'neighborhood'
      • OR 'tract'
      • OR 'zcta'
    • AND "demographic_category" = 'all'
    A. SUMMARY This dataset contains population and demographic estimates and associated margins of error obtained and derived from the US Census. The data is presented over multiple years and geographies. The data is sourced primarily from the American Community Survey.

    B. HOW THE DATASET IS CREATED The raw data is obtained from the census API. Some estimates as published as-is and some are derived.

    C. UPDATE PROCESS New estimates and years of data are appended to this dataset. To request additional census data for San Francisco, email support@datasf.org

    D. HOW TO USE THIS DATASET The dataset is long and contains multiple estimates, years and geographies. To use this dataset, you can filter by the overall segment which contains information about the source, years, geography, demographic category and reporting segment. For census data used in specific reports, you can filter to the reporting segment. To use a subset of the data, you can create a filtered view. More information of how to filter data and create a view can be found here

  16. a

    City of Rochester Disaggregated Demographic Data Standards Guide

    • hub.arcgis.com
    • data.cityofrochester.gov
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2024). City of Rochester Disaggregated Demographic Data Standards Guide [Dataset]. https://hub.arcgis.com/documents/585d03e9857e46b58ade8cd6c180f700
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset authored and provided by
    Open_Data_Admin
    Description

    The City of Rochester and its staff use data about individuals in our community to inform decisions related to policies and programs we design, fund, and carry out. City staff must understand and be accountable to best practices and standards to guide the appropriate use of this information in an ethical and accurate manner that furthers the public good. With these disaggregated data standards, the City seeks to establish useful, uniform standards that guide City staff in their collection, stewardship, analysis, and reporting of information about individuals and their demographic characteristics.This internal guide provides recommended standards and practices to City of Rochester staff for the collection, analysis, and reporting of data related to following characteristics of an individual: Race & Ethnicity; Nativity & Citizenship Status; Language Spoken at Home & English Proficiency; Age; Sex, Gender, & Sexual Orientation; Marital Status; Disability; Address / Geography; Household Income & Size; Housing Tenure; Computer & Internet Use; Employment Status; Veteran Status; and Education Level. This kind of data that describes the characteristics of individuals in our community is disaggregated data. When we summarize data about these individuals and report the data at the group level, it becomes aggregated data. These disaggregated data standards can help City staff in different roles understand how to ask individuals about various demographic traits that may describe them, the collection of which may be useful to inform the City’s programs and policies. Note that this standards document does not mandate the collection of every one of these demographic factors for all analyses or program data intake designs – instead, it prompts City staff to intentionally design surveys and other data intake tools/applications to collect the right level of data to inform the City’s decision-making while also respecting the privacy of the individuals whose information the City seeks to gather. When a City team does choose to collect any of the above-mentioned demographic information about individuals in our community, we advise that they adhere to these standards.

  17. d

    US Consumer Marketing Data - 269M+ Consumer Records - 95% Email and Direct...

    • datarade.ai
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giant Partners (2025). US Consumer Marketing Data - 269M+ Consumer Records - 95% Email and Direct Dials Accuracy [Dataset]. https://datarade.ai/data-products/consumer-business-data-postal-phone-email-demographics-giant-partners
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Giant Partners
    Area covered
    United States
    Description

    Premium B2C Consumer Database - 269+ Million US Records

    Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.

    Core Database Statistics

    Consumer Records: Over 269 million

    Email Addresses: Over 160 million (verified and deliverable)

    Phone Numbers: Over 76 million (mobile and landline)

    Mailing Addresses: Over 116,000,000 (NCOA processed)

    Geographic Coverage: Complete US (all 50 states)

    Compliance Status: CCPA compliant with consent management

    Targeting Categories Available

    Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)

    Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options

    Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics

    Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting

    Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting

    Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors

    Multi-Channel Campaign Applications

    Deploy across all major marketing channels:

    Email marketing and automation

    Social media advertising

    Search and display advertising (Google, YouTube)

    Direct mail and print campaigns

    Telemarketing and SMS campaigns

    Programmatic advertising platforms

    Data Quality & Sources

    Our consumer data aggregates from multiple verified sources:

    Public records and government databases

    Opt-in subscription services and registrations

    Purchase transaction data from retail partners

    Survey participation and research studies

    Online behavioral data (privacy compliant)

    Technical Delivery Options

    File Formats: CSV, Excel, JSON, XML formats available

    Delivery Methods: Secure FTP, API integration, direct download

    Processing: Real-time NCOA, email validation, phone verification

    Custom Selections: 1,000+ selectable demographic and behavioral attributes

    Minimum Orders: Flexible based on targeting complexity

    Unique Value Propositions

    Dual Spouse Targeting: Reach both household decision-makers for maximum impact

    Cross-Platform Integration: Seamless deployment to major ad platforms

    Real-Time Updates: Monthly data refreshes ensure maximum accuracy

    Advanced Segmentation: Combine multiple targeting criteria for precision campaigns

    Compliance Management: Built-in opt-out and suppression list management

    Ideal Customer Profiles

    E-commerce retailers seeking customer acquisition

    Financial services companies targeting specific demographics

    Healthcare organizations with compliant marketing needs

    Automotive dealers and service providers

    Home improvement and real estate professionals

    Insurance companies and agents

    Subscription services and SaaS providers

    Performance Optimization Features

    Lookalike Modeling: Create audiences similar to your best customers

    Predictive Scoring: Identify high-value prospects using AI algorithms

    Campaign Attribution: Track performance across multiple touchpoints

    A/B Testing Support: Split audiences for campaign optimization

    Suppression Management: Automatic opt-out and DNC compliance

    Pricing & Volume Options

    Flexible pricing structures accommodate businesses of all sizes:

    Pay-per-record for small campaigns

    Volume discounts for large deployments

    Subscription models for ongoing campaigns

    Custom enterprise pricing for high-volume users

    Data Compliance & Privacy

    VIA.tools maintains industry-leading compliance standards:

    CCPA (California Consumer Privacy Act) compliant

    CAN-SPAM Act adherence for email marketing

    TCPA compliance for phone and SMS campaigns

    Regular privacy audits and data governance reviews

    Transparent opt-out and data deletion processes

    Getting Started

    Our data specialists work with you to:

    1. Define your target audience criteria

    2. Recommend optimal data selections

    3. Provide sample data for testing

    4. Configure delivery methods and formats

    5. Implement ongoing campaign optimization

    Why We Lead the Industry

    With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.

    Contact our team to discuss your specific targeting requirements and receive custom pricing for your marketing objectives.

  18. a

    Demographic by Race 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Demographic by Race 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/449b09ed0cd046078e8a3e7d7327b1bb
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  19. Income Status (4A) and Selected Geographic, Income, Family, Demographic,...

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    xml
    Updated Mar 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2022). Income Status (4A) and Selected Geographic, Income, Family, Demographic, Educational, Cultural, Language and Labour Force Characteristics of Economic Families (244) for Economic Families and Persons in Economic Families in Private Households, for Canada and Provinces, 1995 and 2000 - 20% Sample Data [Dataset]. https://open.canada.ca/data/en/dataset/ad322f9a-05ce-4748-ab3d-a2fc26a18091
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.

  20. Demographics: Population, Race, Gender Data County

    • kaggle.com
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Demographics: Population, Race, Gender Data County [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/county-level-demographic-population-race-gender
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 14, 2025
    Dataset provided by
    Kaggle
    Authors
    Ahmed Mohamed
    Description

    """

    County-Level Demographic: Population, Race, Gender

    Overview

    This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.

    Dataset Features

    The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.

    Processing Methodology

    1. Source:
    2. County-Level Aggregation:
      • Each county is uniquely identified using State FIPS Code and County FIPS Code.
      • These codes were concatenated to form the unified FIPS column.
    3. Data Cleaning:
      • All numeric columns were converted to appropriate data types.
      • County and state names were extracted from the raw NAME field for clarity.

    Why Use This Dataset?

    This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.

    File Format

    • The dataset is available as a CSV file with 3,000+ rows (one for each county).

    Licensing

    • Source: Data is sourced from the U.S. Census Bureau's 2023 American Community Survey (ACS).
    • License: This dataset is in the public domain and provided under the U.S. Census Bureau’s terms of use. Attribution to the Census Bureau is appreciated.

    Acknowledgments

    Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Department of Education. Institute of Education Sciences. National Center for Education Statistics (2025). NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED Geodata [Dataset]. http://doi.org/10.3886/E218863V1
Organization logoOrganization logoOrganization logo

NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED Geodata

Explore at:
Dataset updated
Feb 10, 2025
Dataset provided by
United States Department of Educationhttp://ed.gov/
Institute of Education Scienceshttp://ies.ed.gov/
National Center for Education Statisticshttps://nces.ed.gov/
Authors
United States Department of Education. Institute of Education Sciences. National Center for Education Statistics
License

https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm

Description

The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACS

Search
Clear search
Close search
Google apps
Main menu