The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
The dashboard was creating using Business Analyst Infographics. Read more about it here: https://www.esri.com/en-us/arcgis/products/data/overview?rmedium=www_esri_com_EtoF&rsource=/en-us/arcgis/products/esri-demographics/overview Data Source: U.S. Census Bureau, Census 2020 Summary File 1, 2021 American Community Survey(ACS), and ESRI 2022 Demographics and Tapestry Segmentation. For more information on Esri Demographics see HERE and for Tapestry see HERE.Geographies: The council district boundaries used in this dashboard are those that were effective as of May 6, 2023.Much of the science for determining the data for an irregular polygon is explained here:https://doc.arcgis.com/en/community-analyst/help/calculation-estimates-for-user-created-areas.htmCalculation estimates for user-created areasBusiness Analyst employs a GeoEnrichment service which uses the concept of a study area to define the location of the point or area that you want to enrich with additional information. If one or more points is input as a study area, the service will create a one-mile ring buffer around the points or points to collect and append enrichment data. You can optionally change the ring buffer size or create drive-time service areas around a point.The GeoEnrichment service uses a sophisticated geographic retrieval methodology to aggregate data for rings and other polygons. A geographic retrieval methodology determines how data is gathered and summarized or aggregated for input features. For standard geographic units, such as states, provinces, counties, or postal codes, the link between a designated area and its attribute data is a simple one-to-one relationship. For example, if an input study trade area contains a selection of ZIP Codes, the data retrieval is a simple process of gathering the data for those areas.Data Allocation MethodThe Data Allocation method allocates block group data to custom areas by examining where the population is located within the block group and determines how much of the population of a block group overlaps a custom area. This method is used in the United States, and similarly in Canada. The population data reported for census blocks, a more granular level of geography than block groups, is used to determine where the population is distributed within a block group. If the geographic center of a block falls within the custom area, the entire population for the block is used to weight the block group data. The geographic distribution of the population at the census block level determines the proportion of census block group data that is allocated to user specified areas as shown in the example.Note:Depending on the data, households, housing units or businesses at the block group level are used as weights. Employing block centriods is superior because it accounts for the possibility that the population may not be evenly distributed geographically throughout a block group.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Geodemographic Segmentation Data from Caliper Corporation contain demographic data in a way that is easy to visualize and interpret. We provide 8 segments and 32 subsegments for exploring the demographic makeup of neighborhoods across the country.
The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.
Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status
The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.
Sample survey data [ssd]
The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.
In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.
The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.
The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.
All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.
Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.
Face-to-face [f2f]
Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.
The questionnaires were developed in Turkish and translated into English.
TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.
The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.
In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.
In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
These data were compiled here to fit various versions of Bayesian population models and compare their performance, primarily the time required to make inferences using different softwares and versions of code. The humpback chub data were collected by US Geological Survey and US Fish and Wildlife service in the Colorado and Little Colorado Rivers from April 2009 to October 2017. Adult fish were captured using hoop nets and electro-fishing, measured for total length and given individual marks using passive integrated transponders that were scanned when fish were recaptured. The other three datasets were collected by US Forest Service. Owl data for the N-occupancy model was collected between 1990 and 2015. Owl data for the two-species example was collected between 1990 and 2011. Both owl data sets were collected in a ~1000 km2 area in the Roseburg District of the Bureau of Land Management in western Oregon, USA. Owl vocalizations (vocal lures) were used to detect barred owl or spotted owl pairs in 158 survey polygons spread throughout the study area. The avian community occupancy data were collected from 1991 to 1995 across 92 sites in the Chiricahua Mountains of southeastern Arizona, USA. 149 species were detected through repeated point counts in each year.
The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..Examples of "Internet access without a subscription" include cases such as free Internet service provided by a respondent's town or city or free Internet service a university may provide for their students.."Internet access" refers to whether or not a household uses or connects to the Internet, regardless of whether or not they pay for the service to do so. Data about Internet access was collected by asking if the respondent or any member of the household accessed the Internet. The respondent then selected one of the following three categories: "Yes, by paying a cell phone company or Internet service provider"; "Yes, without paying a cell phone company or Internet service provider"; or "No access to the Internet at the house, apartment or mobile home". Only respondents who answered "Yes, by paying a cell phone company or Internet service provider" were asked the subsequent question about the types of service they had access to such as dial-up, broadband (high speed) service such as cable, fiber-optic, or DSL, a cellular data plan, satellite or some other service..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (...
Central Asia and Caucasus countries included Uzbekistan, Kazakhstan, the Kyrgyz Republic, Tajikistan and Turkmenistan, Azerbaijan, Armenia and Georgia.This app displays examples of countries within the region based on the 2022 boundaries, along with demographic data. You can click on open map and explore maps and demographic attributes by clicking on the map to see the pop-up. Each map has been enriched with demographic attributes using data enrichment tools in ArcGIS Online. The 2022 boundaries and attributes are provided by Michael Bauer Research GmbH.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2012-2016, to show counts and percentages of population in poverty, by census tract in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2012-2016). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, click here.Attributes: GEOID10 = 2010 Census tract identifier (combination of Federal Information Processing Series (FIPS) codes for state, county, and census tract) County = County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county) Area_Name = 2010 Census tract name- - - - - -Total_Population = # Total Population, 2016 Total_Population_MOE_2016 = # Total population (Margin of Error), 2016- - - - - -Pop_PovertyStatus_Determine = # Population for whom poverty status is determined, 2016 Pop_PovertyStatus_Determine_MOE = # Population for whom poverty status is determined (Margin of Error), 2016 Pop_below_poverty = # Population below poverty, 2016 Pop_below_poverty_MOE = # Population below poverty (Margin of Error), 2016 Pct_below_poverty = % Population below poverty, 2016 Pct_below_poverty_MOE = % Population below poverty (Margin of Error), 2016 Pop_below_poverty_2000 = # Population below poverty, 2000 Pct_below_poverty_2000 = % Population below poverty, 2000 Chg_Pct_in_poverty_2000_16 = Change, % Population below poverty, 2000-2016 Pop_u18_PovStatus_Determine = # Population under 18 years for whom poverty status is determined, 2016 Pop_u18_PovStatus_Determine_MOE = # Population under 18 years for whom poverty status is determined (Margin of Error), 2016 Pop_under18_inPoverty = # Population under 18 years below poverty, 2016 Pop_under18_inPoverty_MOE = # Population under 18 years below poverty (Margin of Error), 2016 Pct_Pop_u18_in_Poverty = % Population under 18 years below poverty, 2016 Pct_Pop_u18_in_Poverty_MOE = % Population under 18 years below poverty (Margin of Error), 2016 Pop_18_64_PovStatus_Determ = # Population 18 to 64 years for whom poverty status is determined, 2016 Pop_18_64_PovStatus_Determ_MOE = # Population 18 to 64 years for whom poverty status is determined (Margin of Error), 2016 Pop_18_64_Years_in_Poverty = # Population 18 to 64 years below poverty, 2016 Pop_18_64_Years_in_Poverty_MOE = # Population 18 to 64 years below poverty (Margin of Error), 2016 Pct_Pop_18_64_in_Poverty = % Population 18 to 64 years below poverty, 2016 Pct_Pop_18_64_in_Poverty_MOE = % Population 18 to 64 years below poverty (Margin of Error), 2016 Pop_65up_PovStatusDetermine = # Population 65 years and over for whom poverty status is determined, 2016 Pop_65up_PovStatusDetermine_MOE = # Population 65 years and over for whom poverty status is determined (Margin of Error), 2016 Pop_65up_in_Poverty = # Population 65 years and over below poverty, 2016 Pop_65up_in_Poverty_MOE = # Population 65 years and over below poverty (Margin of Error), 2016 Pct_Pop_65up_inPoverty = % Population 65 years and over below poverty, 2016 Pct_Pop_65up_inPoverty_MOE = % Population 65 years and over below poverty (Margin of Error), 2016- - - - - -Planning_Region = Planning region designation for ARC purposes AcresLand = Land area within the tract (in acres) AcresWater = Water area within the tract (in acres) AcresTotal = Total area within the tract (in acres) SqMi_Land = Land area within the tract (in square miles) SqMi_Water = Water area within the tract (in square miles) SqMi_Total = Total area within the tract (in square miles) TRACTCE10 = Census tract Federal Information Processing Series (FIPS) code. Census tracts are identified by an up to four-digit integer number and may have an optional two-digit suffix; for example 1457.02 or 23. The census tract codes consist of six digits with an implied decimal between the fourth and fifth digit corresponding to the basic census tract number but with leading zeroes and trailing zeroes for census tracts without a suffix. The tract number examples above would have codes of 145702 and 002300, respectively. CountyName = County Name last_edited_date = Last date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2012-2016
For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Rutherford College by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Rutherford College. The dataset can be utilized to understand the population distribution of Rutherford College by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Rutherford College. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Rutherford College.
Key observations
Largest age group (population): Male # 60-64 years (98) | Female # 30-34 years (70). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rutherford College Population by Gender. You can refer the same here
The National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999 the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements which were designed to meet current and emerging concerns. The surveys examine a nationally representative sample of approximately 5,000 persons each year. These persons are located in counties across the United States, 15 of which are visited each year. The 2001-2002 NHANES contains data for 11,039 individuals (and MEC examined sample size of 10,477) of all ages. Many questions that were asked in NHANES II, 1976-1980, Hispanic HANES 1982-1984, and NHANES III, 1988-1994, were combined with new questions in the NHANES 2001-2002. As in past health examination surveys, data were collected on the prevalence of chronic conditions in the population. Estimates for previously undiagnosed conditions, as well as those known to and reported by survey respondents, are produced through the survey. Risk factors, those aspects of a person's lifestyle, constitution, heredity, or environment that may increase the chances of developing a certain disease or condition, were examined. Data on smoking, alcohol consumption, sexual practices, drug use, physical fitness and activity, weight, and dietary intake were collected. Information on certain aspects of reproductive health, such as use of oral contraceptives and breastfeeding practices, were also collected. The diseases, medical conditions, and health indicators that were studied include: anemia, cardiovascular disease, diabetes and lower extremity disease, environmental exposures, equilibrium, hearing loss, infectious diseases and immunization, kidney disease, mental health and cognitive functioning, nutrition, obesity, oral health, osteoporosis, physical fitness and physical functioning, reproductive history and sexual behavior, respiratory disease (asthma, chronic bronchitis, emphysema), sexually transmitted diseases, skin diseases, and vision. The sample for the survey was selected to represent the United States population of all ages. Special emphasis in the 2001-2002 NHANES was on adolescent health and the health of older Americans. To produce reliable statistics for these groups, adolescents aged 15-19 years and persons aged 60 years and older were over-sampled for the survey. African Americans and Mexican Americans were also over-sampled to enable accurate estimates for these groups. Several important areas in adolescent health, including nutrition and fitness and other aspects of growth and development, were addressed. Since the United States has experienced dramatic growth in the number of older people during the twentieth century, the aging population has major implications for health care needs, public policy, and research priorities. NCHS is working with public health agencies to increase the knowledge of the health status of older Americans. NHANES has a primary role in this endeavor. In the examination, all participants visit the physician who takes their pulse or blood pressure. Dietary interviews and body measurements are included for everyone. All but the very young have a blood sample taken and see the dentist. Depending upon the age of the participant, the rest of the examination includes tests and procedures to assess the various aspects of health listed above. Usually, the older the individual, the more extensive the examination. Some persons who are unable to come to the examination center may be given a less extensive examination in their homes. Demographic data file variables are grouped into three broad categories: (1) Status Variables: provide core information on the survey participant. Examples of the core variables include interview status, examination status, and sequence number. (Sequence number is a unique ID assigned to each sample person and is required to match the information on this demographic file to the rest of the NHANES 2001-2002 data). (2) Recoded Demographic Variables: these variables include age (age in months for persons through age 19 years, 11 months; age in years for 1-84 year olds, and a top-coded age group of 85 years of age and older), gender, a race/ethnicity variable, current or highest grade of education completed, (less than high school, high school, and more than high school education), country of birth (United States, Mexico, or other foreign born), Poverty Income Ratio (PIR), income, and a pregnancy status variable (adjudicated from various pregnancy related variables). Some of the groupings were made due to limited sample sizes for the two-year data set. (3) Interview and Examination Sample Weight Variables: sample weights are available for analyzing NHANES 2001-2002 data. For a complete listing of survey contents for all years of the NHANES see the document -- Survey Content -- NHANES 1999-2010.
The 1996 Zambia Demographic and Health Survey (ZDHS) is a nationally representative survey conducted by the Central Statistical Office at the request of the Ministry of Health, with the aim of gathering reliable information on fertility, childhood and maternal mortality rates, maternal and child health indicators, contraceptive knowledge and use, and knowledge and prevalence of sexually transmitted diseases (STDs) including AIDS. The survey is a follow-up to the Zambia DHS survey carried out in 1992.
The primary objectives of the ZDHS are: - To collect up-to-date information on fertility, infant and child mortality and family planning; - To collect information on health-related matters such as breastfeeding, antenatal care, children's immunisations and childhood diseases; - To assess the nutritional status of mothers and children; iv) To support dissemination and utilisation of the results in planning, managing and improving family planning and health services in the country; and - To enhance the survey capabilities of the institutions involved in order to facilitate the implementation of surveys of this type in the future.
SUMMARY OF FINDINGS
FERTILITY
FAMILY PLANNING
MATERNAL AND CHILD HEALTH
The 1996 Zambia Demographic and Health Survey (ZDHS) is a nationally representative survey. The sample was designed to produce reliable estimates for the country as a whole, for the urban and the rural areas separately, and for each of the nine provinces in the country.
The survey covered all de jure household members (usual residents), all women of reproductive age, aged 15-49 years in the total sample of households, men aged 15-59 and Children under age 5 resident in the household.
Sample survey data
The 1996 ZDHS covered the population residing in private households in the country. The design for the ZDHS called for a representative probability sample of approximately 8,000 completed individual interviews with women between the ages of 15 and 49. It is designed principally to produce reliable estimates for the country as a whole, for the urban and the rural areas separately, and for each of the nine provinces in the country. In addition to the sample of women, a sub-sample of about 2,000 men between the ages of 15 and 59 was also designed and selected to allow for the study of AIDS knowledge and other topics.
SAMPLING FRAME
Zambia is divided administratively into nine provinces and 57 districts. For the Census of Population, Housing and Agriculture of 1990, the whole country was demarcated into census supervisory areas (CSAs). Each CSA was in turn divided into standard enumeration areas (SEAs) of approximately equal size. For the 1992 ZDHS, this frame of about 4,200 CSAs and their corresponding SEAs served as the sampling frame. The measure of size was the number of households obtained during a quick count operation carried out in 1987. These same CSAs and SEAs were later updated with new measures of size which are the actual numbers of households and population figures obtained in the census. The sample for the 1996 ZDHS was selected from this updated CSA and SEA frame.
CHARACTERISTICS OF THE AMPLE
The sample for ZDHS was selected in three stages. At the first stage, 312 primary sampling units corresponding to the CSAs were selected from the frame of CSAs with probability proportional to size, the size being the number of households obtained from the 1990 census. At the second stage, one SEA was selected, again with probability proportional to size, within each selected CSA. An updating of the maps as well as a complete listing of the households in the selected SEAs was carried out. The list of households obtained was used as the frame for the third-stage sampling in which households were selected for interview. Women between the ages of 15 and 49 were identified in these households and interviewed. Men between the ages of 15 and 59 were also interviewed, but only in one-fourth of the households selected for the women's survey.
SAMPLE ALLOCATION
The provinces, stratified by urban and rural areas, were the sampling strata. There were thus 18 strata. The proportional allocation would result in a completely self-weighting sample but would not allow for reliable estimates for at least three of the nine provinces, namely Luapula, North-Western and Western. Results of other demographic and health surveys show that a minimum sample of 800-1,000 women is required in order to obtain estimates of fertility and childhood mortality rates at an acceptable level of sampling errors. It was decided to allocate a sample of 1,000 women to each of the three largest provinces, and a sample of 800 women to the two smallest provinces. The remaining provinces got samples of 850 women. Within each province, the sample was distributed approximately proportionally to the urban and rural areas.
STRATIFICATION AND SYSTEMATIC SELECTION OF CLUSTERS
A cluster is the ultimate area unit retained in the survey. In the 1992 ZDHS and the 1996 ZDHS, the cluster corresponds exactly to an SEA selected from the CSA that contains it. In order to decrease sampling errors of comparisons over time between 1992 and 1996--it was decided that as many as possible of the 1992 clusters be retained. After carefully examining the 262 CSAs that were included in the 1992 ZDHS, locating them in the updated frame and verifying their SEA composition, it was decided to retain 213 CSAs (and their corresponding SEAs). This amounted to almost 70 percent of the new sample. Only 99 new CSAs and their corresponding SEAs were selected.
As in the 1992 ZDHS, stratification of the CSAs was only geographic. In each stratum, the CSAs were listed by districts ordered geographically. The procedure for selecting CSAs in each stratum consisted of: (1) calculating the sampling interval for the stratum: (2) calculating the cumulated size of each CSA; (3) calculating the series of sampling numbers R, R+I, R+21, .... R+(a-1)l, where R is a random number between 1 and 1; (4) comparing each sampling number with the cumulated sizes.
The reasons for not
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
The City of Bloomington contracted with National Research Center, Inc. to conduct the 2019 Bloomington Community Survey. This was the second time a scientific citywide survey had been completed covering resident opinions on service delivery satisfaction by the City of Bloomington and quality of life issues. The first was in 2017. The survey captured the responses of 610 households from a representative sample of 3,000 residents of Bloomington who were randomly selected to complete the survey. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the City of Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)
Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07
Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.
The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.
The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.
The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.
This project aimed to establish a video database of cardiopulmonary resuscitation performance that demonstrates a range of expertise. The original data set contains 54 examples of participants who range in expertise and experience with performing CPR. Each example was recorded from 6 angles with a checkerboard in view to allow for 3D reconstruction. Participants were asked to perform 4 sets of 30 chest compressions with a short pause in between to rest. The faces of each participant have been blurred to reduce the likelihood of identification.
The CPR performances are accompanied by the demographics of the participant and the evaluation data. The evaluation data consists of evaluation by two expert raters who teach Basic Life Support at a UK university, and their agreed rating.
Participants were able to elect for their data to be included in the available database or restricted to the research team only. Consent was given for video data and evaluation data separately. Thus, this data contains video data from 41 participants, and evaluation data from 42 participants.
This dataset is intended to be used to further understanding of expertise in CPR and facilitate the development of technology that can track movement and evaluate healthcare professional skills.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.