Examining disparities in social outcomes as a function of gender, age, or race has a long tradition in psychology and other social sciences. With an increasing availability of large naturalistic data sets, researchers are afforded the opportunity to study the effects of demographic characteristics with real-world data and high statistical power. However, since demographic characteristics are often determined by having participants rate images of targets, limits in participant pools can hinder researchers from analyzing large data sets. Here, we present a tutorial on how to use two face classification algorithms, Face++ and Kairos. We also test and compare their accuracy under varying conditions and provide practical recommendations for their use. Drawing on two face databases (n = 2,805 images), we find that classification accuracy is (a) relatively high, (b) similar for standardized and more variable images, and (c) dependent on various factors. Kairos outperformed Face++ on all three demographic variables; accuracy was lower for Hispanic and Asian (vs. Black and White) targets; and both algorithms tended to overestimate the age of targets. In sum, we propose that automated face classification can be a useful tool for researchers interested in studying the effects of demographic characteristics in large naturalistic data sets.
This layer was originally created to support the STAR Rating System objective EE-4: Equitable Services & Access Community Level Outcomes for King County. Three demographics are combined into one attribute to determine King County services access analysis by census tract. Each demographic: English proficiency, people of color, and household income, was applied to census tracts separately. This demographic information is based on the2014-2018 American Community Survey from the Census Bureau. The demographic was sorted into five classes using the Natural Breaks classification. Then each class was given a score: 1 for the first class, 2 for the second class, 3 for the third class, etc. Next, each census tract received a score based on the class it was in: 1 if it was in the first class, 2 if it was in the second class, 3 if it was in the third class, etc. So each census tract will have a score for English proficiency (ESL_Score), a score for people of color (RE_Score), and a score for household income (Income_Score). These scores were added up (TotalScore) and an evenly weight average was determined (WeightedTotal333333). Thus each score for the census tracts represents a combination of demographics where lower scores mean a wealthier, less diverse community and higher scores mean more diverse, less wealthy community.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Ecologists use classifications of individuals in categories to understand composition of populations and communities. These categories might be defined by demographics, functional traits, or species. Assignment of categories is often imperfect, but frequently treated as observations without error. When individuals are observed but not classified, these "partial" observations must be modified to include the missing data mechanism to avoid spurious inference.
We developed two hierarchical Bayesian models to overcome the assumption of perfect assignment to mutually exclusive categories in the multinomial distribution of categorical counts, when classifications are missing. These models incorporate auxiliary information to adjust the posterior distributions of the proportions of membership in categories. In one model, we use an empirical Bayes approach, where a subset of data from one year serves as a prior for the missing data the next. In the other approach, we use a small random sample of data within a year to inform the distribution of the missing data.
We performed a simulation to show the bias that occurs when partial observations were ignored and demonstrated the altered inference for the estimation of demographic ratios. We applied our models to demographic classifications of elk (Cervus elaphus nelsoni) to demonstrate improved inference for the proportions of sex and stage classes.
We developed multiple modeling approaches using a generalizable nested multinomial structure to account for partially observed data that were missing not at random for classification counts. Accounting for classification uncertainty is important to accurately understand the composition of populations and communities in ecological studies.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-12-16.The Census Bureau has reviewed this data product for unauthorized disclosure of confidential information and has approved the disclosure avoidance practices applied (Approval ID: CBDRB-FY22-032)...Key Table Information:.Includes owner-level data for U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of owners of nonemployer firms. Percent of number of owners of nonemployer firms (%)...These data are aggregated at the owner level by the following demographic classifications:.All owners of nonemployer firms. Sex. Female. Male. . . Ethnicity. Hispanic. Non-Hispanic. . . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Nonminority (Firms classified as non-Hispanic and White). . . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Nonveteran. . . ...Data Notes:.. Data are tabulated at the owner level.. An owner can be tabulated in more than one race group.. An owner cannot be tabulated with two mutually exclusive demographic classifications (e.g., both as a veteran and a nonveteran).. An individual can own more than one firm....Owner Characteristics:.Using administrative records, owner characteristics were assigned for the following categories:. Place of Birth (USBORN). Owner was born in the U.S.. Owner was born outside the U.S.. . U.S. Citizenship (USCITIZEN). Owner is a citizen of the U.S.. Owner is not a citizen of the U.S.. . Owner Age (OWNRAGE). Under 25. 25 to 34. 35 to 44. 45 to 54. 55 to 64. 65 or over. . . .Question Description codes for the topics are in parenthesis. ..Industry and Geography Coverage:.Data are shown for the total for all sectors (00) and the 2-digit NAICS codes levels for the U.S. For the states and metro areas, data are shown for the total for all sectors (00) only...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2018/AB1800NESD04.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2018/absnesdo.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable.For a complete list of all economic programs symbols, see the Symbols Glossary...Source:.U.S. Census Bureau, Nonemployer Statistics by Demographics, Annual Business Survey Program.For more information about the survey, please visit https://www.census.gov/programs-surveys/abs.html...Contact Information:.To contact the Annual Business Survey Program staff:.Email general, nonsecure, and unencrypted messages to adep.annual.business.survey@census.gov.. Call 301.763.3316 between 7 a.m. and 5 p.m. (EST), Monday through Friday...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic projections for the Shared Socioeconomic Pathways SSP1 and SSP3 scenarios with demographic breakdown for "young", "adult" and "old" populations, defined as <15 years old, 15-65 years old, and >65 years old, at 10 year intervals. Projections are calculated combining SSP population projections, UN WPP country wide demographic trends, and SEDAC demographic spatial distributions.
The "interp" version of the files includes linear interpolationed values for each grid cell for every year.
Summary File 4 is repeated or iterated for the total population and 335 additional population groups: 132 race groups,78 American Indian and Alaska Native tribe categories, 39 Hispanic or Latino groups, and 86 ancestry groups.Tables for any population group excluded from SF 2 because the group's total population in a specific geographic area did not meet the SF 2 threshold of 100 people are excluded from SF 4. Tables in SF 4 shown for any of the above population groups will only be shown if there are at least 50 unweighted sample cases in a specific geographic area. The same 50 unweighted sample cases also applied to ancestry iterations. In an iterated file such as SF 4, the universes households, families, and occupied housing units are classified by the race or ethnic group of the householder. The universe subfamilies is classified by the race or ethnic group of the reference person for the subfamily. In a husband/wife subfamily, the reference person is the husband; in a parent/child subfamily, the reference person is always the parent. The universes population in households, population in families, and population in subfamilies are classified by the race or ethnic group of the inidviduals within the household, family, or subfamily without regard to the race or ethnicity of the householder. Notes follow selected tables to make the classification of the universe clear. In any population table where there is no note, the universe classification is always based on the race or ethnicity of the person. In all housing tables, the universe classification is based on the race or ethnicity of the householder.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data package includes the data, analysis scripts, and relevant documents for the project: Automated Classification of Demographics from Face Images: A Tutorial and Validation.
Sourcing accurate and up-to-date geodemographic data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium geodemographics data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Geodemographic Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Sex for the U.S., States, and Metro Areas: 2020.Table ID.ABSNESD2020.AB00MYNESD01A.Survey/Program.Economic Surveys.Year.2020.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2020 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2024-02-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2021 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2021 ABS collection year produces statistics for the 2020 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Sex Female Male Equally male-owned and female-owned Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaMetropolitan Statistical AreasData are also shown for the 3- and 4-digit NAICS code for:United StatesStates and the District of ColumbiaFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 4-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census Bureau data sources that inc...
This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic traits descriptive statistics.
In 2016, around ** percent of Vietnam's population were classified as being economically secure. This was also the largest group among the population structure. Accounting for * percent of the population in the same year was the extremely poor group, which decreased from *** percent in 2010. While both the share of the middle class and economically secure population increased throughout the years, the opposite applied to the rest.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
In 2021, 20.1% of people from the Indian ethnic group were in higher managerial and professional occupations – the highest percentage out of all ethnic groups in this socioeconomic group.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2023-05-11.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY23-0262)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female. . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority. Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran. Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown for the urban or rural classification of the firm:. Urban. Rural. Not classified...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. Firms are classified as urban or rural based on the population of the Census block of its physical location or mailing address. Firms without an assigned Census block are designated as "Not classified". Firms with a physical location or mailing address on a Census block with at least 2,500 inhabitants are classified as "Urban". All other firms are classified as "Rural"....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas...Data are also shown for the 3-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2019/AB1900NESD05.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2019/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the level of noise applied to the data:. G - Low noise: The cell value was changed by less than 2 percent by the application of noi...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper represents our research results in the pursuit of the following objectives: (i) to introduce a novel multi-sources data set to tackle the shortcomings of the previous data sets, (ii) to propose a robust artificial intelligence-based solution to identify dyslexia in primary school pupils, (iii) to investigate our psycholinguistic knowledge by studying the importance of the features in identifying dyslexia by our best AI model. In order to achieve the first objective, we collected and annotated a new set of eye-movement-during-reading data. Furthermore, we collected demographic data, including the measure of non-verbal intelligence, to form our three data sources. Our data set is the largest eye-movement data set globally. Unlike the previously introduced binary-class data sets, it contains (A) three class labels and (B) reading speed. Concerning the second objective, we formulated the task of dyslexia prediction as regression and classification problems and scrutinized the performance of 12 classifications and eight regressions approaches. We exploited the Bayesian optimization method to fine-tune the hyperparameters of the models: and reported the average and the standard deviation of our evaluation metrics in a stratified ten-fold cross-validation. Our studies showed that multi-layer perceptron, random forest, gradient boosting, and k-nearest neighbor form the group having the most acceptable results. Moreover, we showed that although separately using each data source did not lead to accurate results, their combination led to a reliable solution. We also determined the importance of the features of our best classifier: our findings showed that the IQ, gender, and age are the top three important features; we also showed that fixation along the y-axis is more important than other fixation data. Dyslexia detection, eye fixation, eye movement, demographic, classification, regression, artificial intelligence.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Veteran Status for the U.S., States, and Metro Areas: 2018.Table ID.ABSNESD2018.AB00MYNESD01D.Survey/Program.Economic Surveys.Year.2018.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2018 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2021-12-16.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2019 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2019 ABS collection year produces statistics for the 2018 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Veteran Status (defined as having served in any branch of the U.S. Armed Forces) Veteran Equally veteran/nonveteran Nonveteran Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.Data are shown for the total for all sectors (00) and the 2-digit NAICS levels for the U.S., states and District of Columbia, and metro areas.For information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Management of Companies and Enterprises (NAICS 55)Private Households (NAICS 814)Public Administration (NAICS 92)Industries Not Classified (NAICS 99)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Ethnicity for the U.S., States, and Metro Areas: 2019.Table ID.ABSNESD2019.AB00MYNESD01B.Survey/Program.Economic Surveys.Year.2019.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2019 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2023-05-11.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2020 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2020 ABS collection year produces statistics for the 2019 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Ethnicity Hispanic Equally Hispanic/non-Hispanic Non-Hispanic Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaMetropolitan Statistical AreasData are also shown for the 3-digit NAICS code for:United StatesStates and the District of ColumbiaFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 3-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census Bureau data sources...
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Download or subscription of online products for personal use in the last 3 months by demographic characteristics and type of product. National.
This statistic shows the percentage of the U.S. adult population that belong to the middle class from 1971 to 2015, by education. In 2015, about 50 percent of U.S. adult residents were part of the middle class.
This study defined middle class income households as those with an income between 67 and 200 percent of the U.S. median household income, after adjustment for household size. Middle class income ranges from about 42,000 U.S. dollars to about 126,000 U.S. dollars per year for a three-person household.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Background: Clean water is an essential part of human healthy life and wellbeing. More recently, rapid population growth, high illiteracy rate, lack of sustainable development, and climate change; faces a global challenge in developing countries. The discontinuity of drinking water supply forces households either to use unsafe water storage materials or to use water from unsafe sources. The present study aimed to identify the determinants of water source types, use, quality of water, and sanitation perception of physical parameters among urban households in North-West Ethiopia.
Methods: A community-based cross-sectional study was conducted among households from February to March 2019. An interview-based a pretested and structured questionnaire was used to collect the data. Data collection samples were selected randomly and proportional to each of the kebeles' households. MS Excel and R Version 3.6.2 were used to enter and analyze the data; respectively. Descriptive statistics using frequencies and percentages were used to explain the sample data concerning the predictor variable. Both bivariate and multivariate logistic regressions were used to assess the association between independent and response variables.
Results: Four hundred eighteen (418) households have participated. Based on the study undertaken,78.95% of households used improved and 21.05% of households used unimproved drinking water sources. Households drinking water sources were significantly associated with the age of the participant (x2 = 20.392, df=3), educational status(x2 = 19.358, df=4), source of income (x2 = 21.777, df=3), monthly income (x2 = 13.322, df=3), availability of additional facilities (x2 = 98.144, df=7), cleanness status (x2 =42.979, df=4), scarcity of water (x2 = 5.1388, df=1) and family size (x2 = 9.934, df=2). The logistic regression analysis also indicated that those factors are significantly determining the water source types used by the households. Factors such as availability of toilet facility, household member type, and sex of the head of the household were not significantly associated with drinking water sources.
Conclusion: The uses of drinking water from improved sources were determined by different demographic, socio-economic, sanitation, and hygiene-related factors. Therefore, ; the local, regional, and national governments and other supporting organizations shall improve the accessibility and adequacy of drinking water from improved sources in the area.
Examining disparities in social outcomes as a function of gender, age, or race has a long tradition in psychology and other social sciences. With an increasing availability of large naturalistic data sets, researchers are afforded the opportunity to study the effects of demographic characteristics with real-world data and high statistical power. However, since demographic characteristics are often determined by having participants rate images of targets, limits in participant pools can hinder researchers from analyzing large data sets. Here, we present a tutorial on how to use two face classification algorithms, Face++ and Kairos. We also test and compare their accuracy under varying conditions and provide practical recommendations for their use. Drawing on two face databases (n = 2,805 images), we find that classification accuracy is (a) relatively high, (b) similar for standardized and more variable images, and (c) dependent on various factors. Kairos outperformed Face++ on all three demographic variables; accuracy was lower for Hispanic and Asian (vs. Black and White) targets; and both algorithms tended to overestimate the age of targets. In sum, we propose that automated face classification can be a useful tool for researchers interested in studying the effects of demographic characteristics in large naturalistic data sets.