https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract 1990-2010. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.
Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.
Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.
Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.
Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern
The purpose of this data package is to offer relevant demographic data for those interested to understand the health status of California population groups. This includes health indicators like newborn screenings for congenital diseases, emergency department diagnosis and visits for an asthma attack, infections among California population and surgical site infections along with demographic indicators influenced directly by the population health.
With Versium REACH Demographic Append you will have access to many different attributes for enriching your data.
Basic, Household and Financial, Lifestyle and Interests, Political and Donor.
Here is a list of what sorts of attributes are available for each output type listed above:
Basic:
- Senior in Household
- Young Adult in Household
- Small Office or Home Office
- Online Purchasing Indicator
- Language
- Marital Status
- Working Woman in Household
- Single Parent
- Online Education
- Occupation
- Gender
- DOB (MM/YY)
- Age Range
- Religion
- Ethnic Group
- Presence of Children
- Education Level
- Number of Children
Household, Financial and Auto: - Household Income - Dwelling Type - Credit Card Holder Bank - Upscale Card Holder - Estimated Net Worth - Length of Residence - Credit Rating - Home Own or Rent - Home Value - Home Year Built - Number of Credit Lines - Auto Year - Auto Make - Auto Model - Home Purchase Date - Refinance Date - Refinance Amount - Loan to Value - Refinance Loan Type - Home Purchase Price - Mortgage Purchase Amount - Mortgage Purchase Loan Type - Mortgage Purchase Date - 2nd Most Recent Mortgage Amount - 2nd Most Recent Mortgage Loan Type - 2nd Most Recent Mortgage Date - 2nd Most Recent Mortgage Interest Rate Type - Refinance Rate Type - Mortgage Purchase Interest Rate Type - Home Pool
Lifestyle and Interests:
- Mail Order Buyer
- Pets
- Magazines
- Reading
- Current Affairs and Politics
- Dieting and Weight Loss
- Travel
- Music
- Consumer Electronics
- Arts
- Antiques
- Home Improvement
- Gardening
- Cooking
- Exercise
- Sports
- Outdoors
- Womens Apparel
- Mens Apparel
- Investing
- Health and Beauty
- Decorating and Furnishing
Political and Donor: - Donor Environmental - Donor Animal Welfare - Donor Arts and Culture - Donor Childrens Causes - Donor Environmental or Wildlife - Donor Health - Donor International Aid - Donor Political - Donor Conservative Politics - Donor Liberal Politics - Donor Religious - Donor Veterans - Donor Unspecified - Donor Community - Party Affiliation
Statewide VA data on the demographic and economic characteristics of the labor force are published on an annual-average basis from the Current Population Survey (CPS), the sample survey of households used to calculate the U.S. unemployment rate. For VA state ,employment status data are tabulated for 67 sex, race, Hispanic or Latino ethnicity, marital status, and detailed age categories and evaluated against a minimum base, calculated to reflect an expected maximum coefficient of variation (CV) of 50 percent, to determine reliability for publication
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract for the years 2008-2017. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.A curated version of this data is available through ICPSR at http://dx.doi.org/10.3886/ICPSR38528.v1.
The 110th Congressional District Summary File (Sample) (110CDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
This dataset contains Iowa population estimates by poverty status for past 12 months, sex, and work experience for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B17004. Poverty includes the following: all levels, below poverty level, and above poverty level. Sex includes the following: both, male, and female. Work experience includes the following: all levels, full time year-round, part-time or part-year, and did not work.
The National Health and Nutrition Examination Survey I Epidemiologic Followup Study (NHEFS) is a longitudinal study that follows participants from the NHANES I who were aged 25-74 in 1971-1975. The NHEFS surveys were designed to investigate the association between factors measured at the baseline and the development of specific health conditions and functional limitations. Follow-up data were collected in 1982-1984 (ICPSR 8900), 1986 (ICPSR 9466), 1987 (ICPSR 9854), and 1992. The 1992 NHEFS collected information on changes in the health and functional status of the NHEFS cohort since the last contact period. The Vital and Tracing Status file (Part 1) provides summary information about the status of the NHEFS cohort. The Interview Data file (Part 2) covers selected aspects of the respondent's health history, including injuries, activities of daily living, vision and hearing, medical conditions, exercise, weight, family history of cancer, surgeries, smoking, alcohol use, and medical care utilization. The Health Care Facility Stay files (Parts 3 and 4) supply information about stays in hospitals, nursing homes, and mental health care facilities, as well as information abstracted from facility medical records. The Mortality Data file (Part 5) contains data abstracted from the death certificates for NHEFS decedents.
Please note: This is a Synthetic data file, also known as a Dummy file - it is not real data. This synthetic file should not be used for purposes other than to develop an test computer programs that are to be submitted by remote access. Each record in the synthetic file matches the format and content parameters of the real Statistics Canada Master File with which it is associated, but the data themselves have been 'made up'. They do NOT represent responses from real individuals and should NOT be used for actual analysis. These data are provided solely for the purpose of testing statistical package 'code' (e.g. SPSS syntax, SAS programs, etc.) in preperation for analysis using the associated Master File in a Research Data Centre, by Remote Job Submission, or by some other means of secure access. If statistical analysis 'code' works with the synthetic data, researchers can have some confidence that the same code will run successfully against the Master File data in the Resource Data Centres. In the fall of 1991, the National Health Information Council recommended that an ongoing national survey of population health be conducted. This recommendation was based on consideration of the economic and fiscal pressures on the health care systems and the requirement for information with which to improve the health status of the population in Canada. Commencing in April 1992, Statistics Canada received funding for development of a National Population Health Survey (NPHS). The NPHS collects information related to the health of the Canadian population and related socio-demographic information to: aid in the development of public policy by providing measures of the level, trend and distribution of the health status of the population, provide data for analytic studies that will assist in understanding the determinants of health, and collect data on the economic, social, demographic, occupational and environmental correlates of health. In addition the NPHS seeks to increase the understanding of the relationship between health status and health care utilization, including alternative as well as traditional services, and also to allow the possibility of linking survey data to routinely collected administrative data such as vital statistics, environmental measures, community variables, and health services utilization. The NPHS collects information related to the health of the Canadian population and related socio-demographic information. It is composed of three components: the Households, the Health Institutions, and the North components. The Household component started in 1994/1995 and is conducted every two years. The first two cycles (1994/1995, 1996/1997) were both cross-sectional and longitudinal. The NPHS longitudinal sample includes 17,276 persons from all ages in 1994/1995 and these same persons are to be interviewed every two years. Each cycle, a common set of health questions is asked to the respondents. This allows for the analysis of changes in the health of the respondents over time. In addition to the common set of questions, the questionnaire does include focus content and supplements that change from cycle to cycle. Health Canada, Public Health Agency of Canada and provincial ministries of health use NPHS longitudinal data to plan, implement and evaluate programs and health policies to improve health and the efficiency of health services. Non-profit health organizations and researchers in the academic fields use the information to move research ahead and to improve health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1/SD = Standard deviation.
The City of Rochester and its staff use data about individuals in our community to inform decisions related to policies and programs we design, fund, and carry out. City staff must understand and be accountable to best practices and standards to guide the appropriate use of this information in an ethical and accurate manner that furthers the public good. With these disaggregated data standards, the City seeks to establish useful, uniform standards that guide City staff in their collection, stewardship, analysis, and reporting of information about individuals and their demographic characteristics.This internal guide provides recommended standards and practices to City of Rochester staff for the collection, analysis, and reporting of data related to following characteristics of an individual: Race & Ethnicity; Nativity & Citizenship Status; Language Spoken at Home & English Proficiency; Age; Sex, Gender, & Sexual Orientation; Marital Status; Disability; Address / Geography; Household Income & Size; Housing Tenure; Computer & Internet Use; Employment Status; Veteran Status; and Education Level. This kind of data that describes the characteristics of individuals in our community is disaggregated data. When we summarize data about these individuals and report the data at the group level, it becomes aggregated data. These disaggregated data standards can help City staff in different roles understand how to ask individuals about various demographic traits that may describe them, the collection of which may be useful to inform the City’s programs and policies. Note that this standards document does not mandate the collection of every one of these demographic factors for all analyses or program data intake designs – instead, it prompts City staff to intentionally design surveys and other data intake tools/applications to collect the right level of data to inform the City’s decision-making while also respecting the privacy of the individuals whose information the City seeks to gather. When a City team does choose to collect any of the above-mentioned demographic information about individuals in our community, we advise that they adhere to these standards.
This table describes the proportion of the population with one or more underlying health conditions that are believed to increase the risk of negative outcomes following COVID-19 infection, including hospitalization and death. Estimates are based on data from the 2017-2018 Canadian Community Health Survey, and are provided for the Canadian adult (age 18 and older) population by select demographic and socio-economic characteristics at the national and provincial/territorial level.
Data set on the prevalence of self-care behaviors by non-institutionalized older adults. Personal interviews were conducted with 3,485 individuals 65 years of age and older, with oversampling of the oldest old. Questions were asked about the type and extent of self-care behaviors for activities of daily living, management of chronic conditions (through self-care activities, equipment use, and environmental modifications), medical self-care for acute conditions, health promotion/disease preventions, social support, health service utilization, and socio-demographic/economic status. A follow-up study by telephone was conducted in 1994 to continue examination of subjects. Many of the same questions from the baseline were asked, along with questions regarding change in health status since baseline and nursing home visits. For subjects who had been institutionalized since baseline (Part 2), information was gathered (by proxy) regarding demographic status, living arrangements prior to institutionalization, and reasons for institutionalization. For subjects who had died since baseline (Part 3), information was again gathered through interviews with proxies. Questions covered nursing home admissions and date and place of death. In both waves, a proxy was substituted if the subject was hospitalized (or institutionalized since baseline), too ill, cognitively not able to respond, or deceased. Survey data were linked to Medicare/Medicaid health utilization records. The baseline data are archived at NACDA as ICPSR Study No. 6718, and the followup data are archived as ICPSR Study No. 2592 and linkable to the baseline data. * Dates of Study: 1990-1994 * Study Features: Longitudinal * Sample Size: ** 1990-1: 3,485 (Baseline) ** 1994: 2,601 (Followup) Links: * 1990-1991 Baseline ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06718 * 1994 Follow-up ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02592
The Indonesia Demographic and Health Survey (IDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health. The 2002-2003 IDHS follows a sequence of several previous surveys: the 1987 National Indonesia Contraceptive Prevalence Survey (NICPS), the 1991 IDHS, the 1994 IDHS, and the 1997 IDHS. The 2002-2003 IDHS is expanded from the 1997 IDHS by including a collection of information on the participation of currently married men and their wives and children in the health care.
The main objective of the 2002-2003 IDHS is to provide policymakers and program managers in population and health with detailed information on population, family planning, and health. In particular, the 2002-2003 IDHS collected information on the female respondents’ socioeconomic background, fertility levels, marriage and sexual activity, fertility preferences, knowledge and use of family planning methods, breastfeeding practices, childhood and adult mortality including maternal mortality, maternal and child health, and awareness and behavior regarding AIDS and other sexually transmitted infections in Indonesia.
The 2002-2003 IDHS was specifically designed to meet the following objectives: - Provide data concerning fertility, family planning, maternal and child health, maternal mortality, and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs - Measure trends in fertility and contraceptive prevalence rates, analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception - Evaluate achievement of goals previously set by the national health programs, with special focus on maternal and child health - Assess men’s participation and utilization of health services, as well as of their families - Assist in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the area of family planning, fertility, and health in general.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
Administratively, Indonesia is divided into 30 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts and each subdistrict is divided into villages. The entire village is classified as urban or rural.
The primary objective of the 2002-2003 IDHS is to provide estimates with acceptable precision for the following domains: · Indonesia as a whole; · Each of 26 provinces covered in the survey. The four provinces excluded due to political instability are Nanggroe Aceh Darussalam, Maluku, North Maluku and Papua. These provinces cover 4 percent of the total population. · Urban and rural areas of Indonesia; · Each of the five districts in Central Java and the five districts in East Java covered in the Safe Motherhood Project (SMP), to provide information for the monitoring and evaluation of the project. These districts are: - in Central Java: Cilacap, Rembang, Jepara, Pemalang, and Brebes. - in East Java: Trenggalek, Jombang, Ngawi, Sampang and Pamekasan.
The census blocks (CBs) are the primary sampling unit for the 2002-2003 IDHS. CBs were formed during the preparation of the 2000 Population Census. Each CB includes approximately 80 households. In the master sample frame, the CBs are grouped by province, by regency/municipality within a province, and by subdistricts within a regency/municipality. In rural areas, the CBs in each district are listed by their geographical location. In urban areas, the CBs are distinguished by the urban classification (large, medium and small cities) in each subdistrict.
Note: See detailed description of sample design in APPENDIX B of the survey report.
Face-to-face
The 2002-2003 IDHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire for ever-married women 15-49 years old, and the Men’s Questionnaire for currently married men 15-54 years old. The Household Questionnaire and the Women’s Questionnaire were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. In consultation with the NFPCB and MOH, BPS modified these questionnaires to reflect relevant issues in family planning and health in Indonesia. Inputs were also solicited from potential data users to optimize the IDHS in meeting the country’s needs for population and health data. The questionnaires were translated from English into the national language, Bahasa Indonesia.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Basic information collected for each person listed includes the following: age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, the Household Questionnaire also identifies unmarried women and men age 15-24 who are eligible for the individual interview in the Indonesia Young Adult Reproductive Health Survey (IYARHS). Information on characteristics of the household’s dwelling unit, such as the source of water, type of toilet facilities, construction materials used for the floor and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status.
The Women’s Questionnaire was used to collect information from all ever-married women age 15-49. These women were asked questions on the following topics: • Background characteristics, such as age, marital status, education, and media exposure • Knowledge and use of family planning methods • Fertility preferences • Antenatal, delivery, and postnatal care • Breastfeeding and infant feeding practices • Vaccinations and childhood illnesses • Marriage and sexual activity • Woman’s work and husband’s background characteristics • Childhood mortality • Awareness and behavior regarding AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality.
The Men’s Questionnaire was administered to all currently married men age 15-54 in every third household in the IDHS sample. The Men’s Questionnaire collected much of the same information included in the Women’s Questionnaire, but was shorter because it did not contain questions on reproductive history, maternal and child health, nutrition, and maternal mortality. Instead, men were asked about their knowledge and participation in the health-seeking practices for their children.
All completed questionnaires for IDHS, accompanied by their control forms, were returned to the BPS central office in Jakarta for data processing. This process consisted of office editing, coding of open-ended questions, data entry, verification, and editing computer-identified errors. A team of about 40 data entry clerks, data editors, and two data entry supervisors processed the data. Data entry and editing started on November 4, 2002 using a computer package program called CSPro, which was specifically designed to process DHS-type survey data. To prepare the data entry programs, two BPS staff spent three weeks in ORC Macro offices in Calverton, Maryland in April 2002.
A total of 34,738 households were selected for the survey, of which 33,419 were found. Of the encountered households, 33,088 (99 percent) were successfully interviewed. In these households, 29,996 ever-married women 15-49 were identified, and complete interviews were obtained from 29,483 of them (98 percent). From the households selected for interviews with men, 8,740 currently married men 15-54 were identified, and complete interviews were obtained from 8,310 men, or 95 percent of all eligible men. The generally high response rates for both household and individual interviews (for eligible women and men) were due mainly to the strict enforcement of the rule to revisit the originally selected household if no one was at home initially. No substitution for the originally selected households was allowed. Interviewers were instructed to make at least three visits in an effort to contact the household, eligible women, and eligible men.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002-2003 Indonesia Demographic and Health Survey (IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Background : Substantial differences between countries were observed in terms of Covid-19 death tolls during the past two years. It was of interest to find out how the epidemiologic and/or demographic history of the population may have had a role in the high prevalence of the Covid-19 in some countries. Objective : This observational study aimed to investigate possible relations between Covid-19 death numbers in 39 countries and the prepandemic history of epidemiologic and demographic conditions. Methods : We sought the Covid-19 death toll in 39 countries in Europe, America, Africa, and Asia. Records (2019) of epidemiologic (Cancer, Alzheimer's disease) and demographic (natality, mortality, and fetility rates, percentage of people aged 65 and over) parameters as well as data on alcohol intake per capita were retrieved from official web pages. Data was analysed by simple linear or polynomial regression by the mean of Microsoft Excell software (2016). Results : When Covid-19 death numbers were plotted against the geographic latitude of each country, a bell-shaped curve was obtained for both the first and second years (coefficient of determination R2=0.38) of the pandemic. In a similar manner, bell-shaped curves were obtained when latitudes were plotted against the scores of (cancer plus Alzheimer's disease, R² = 0,65,), the percentage of advanced age (R² = 0,52,) and the alcohol intake level (R² = 0,64,). Covid-19 death numbers were positively correlated to the scores of (cancer plus Alzheimer's disease) (R2= 0.41, P= 1.61x10-5), advanced age (R2= 0.38, P= 4.09x10-5) and alcohol intake (R2= 0.48, P= 1.55x10-6). Instead, inverted bell-shaped curves were obtained when latitudes were plotted against the birth rate/mortality rate ratio (R² = 0,51) and the fetility rate (R² = 0,33). In addition, Covid-19 deaths were negatively correlated with the birth rate/mortality rate ratio (R2= 0.67) and fertility rate (R2= 0.50). Conclusion : The results show that the 39 countries in both hemisphers in this study have different patterns of epidemiologic and demographic factors, and that the negative history of epidemiologic and demographic factors of the northern hemisphere countries, as well as their high alcohol intake, were very correlated with their Covid-19 death tolls. Hence, also nutritional habits may have had a role in the general health status of people in regard to their immunity against the coronavirus.
Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities.
The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous.
Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation.
Idiosyncrasies or Limitations:
Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages.
Paper Surveys
1. Are optional
2. Survey taker is expected to specify agency that provides service
2. Survey taker can skip or elect not to answer questions
3. Invalid/unreadable data may be entered for survey date or date may be skipped
4. OCRing of free-form tet fields may fail.
5. Analytical value of free-form text answers is unclear
Online Survey
1. Are optional
2. Agency is defaulted based on the URL
3. Some questions must be answered
4. Date of survey is automated
This dataset comprises the third follow-up of the baseline Hispanic EPESE, HISPANIC ESTABLISHED POPULATIONS FOR THE EPIDEMIOLOGIC STUDIES OF THE ELDERLY, 1993-1994: ARIZONA, CALIFORNIA, COLORADO, NEW MEXICO, AND TEXAS, and provides information on 1,682 of the original respondents. The Hispanic EPESE collected data on a representative sample of community-dwelling Mexican-American elderly, aged 65 years and older, residing in the five southwestern states of Arizona, California, Colorado, New Mexico, and Texas. The primary purpose of the series was to provide estimates of the prevalence of key physical health conditions, mental health conditions, and functional impairments in older Mexican Americans and to compare these estimates with those for other populations. The Hispanic EPESE attempted to determine whether certain risk factors for mortality and morbidity operate differently in Mexican Americans than in non-Hispanic White Americans, African Americans, and other major ethnic groups. The public-use data cover background characteristics (age, sex, type of Hispanic race, income, education, marital status, number of children, employment, and religion), height, weight, social and physical functioning, chronic conditions, related health problems, health habits, self-reported use of dental, hospital, and nursing home services, and depression. The follow-ups provide a cross-sectional examination of the predictors of mortality, changes in health outcomes, and institutionalization and other changes in living arrangements, as well as changes in life situations and quality of life issues. The vital status of respondents from baseline to this round of the survey may be determined using the Vital Status file (Part 2). This file contains interview dates from the baseline as well as vital status at Wave IV (respondent survived, date of death if deceased, proxy-assisted, proxy-reported cause of death, proxy-true). The first follow-up of the baseline data (Hispanic EPESE Wave II, 1995-1996 [ICPSR 3385]) followed 2,438 of the original 3,050 respondents, and the second follow-up (Hispanic EPESE Wave III, 1998-1999 [ICPSR 4102]) followed 1,980 of these respondents. Hispanic EPESE, 1993-1994 (ICPSR 2851), was modeled after the design of ESTABLISHED POPULATIONS FOR EPIDEMIOLOGIC STUDIES OF THE ELDERLY, 1981-1993: EAST BOSTON, MASSACHUSETTS, IOWA AND WASHINGTON COUNTIES, IOWA, NEW HAVEN, CONNECTICUT, AND NORTH CENTRAL NORTH CAROLINA and ESTABLISHED POPULATIONS FOR EPIDEMIOLOGIC STUDIES OF THE ELDERLY, 1996-1997: PIEDMONT HEALTH SURVEY OF THE ELDERLY, FOURTH IN-PERSON SURVEY DURHAM, WARREN, VANCE, GRANVILLE, AND FRANKLIN COUNTIES, NORTH CAROLINA.
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.