100+ datasets found
  1. n

    Demographic data collection in STEM organizations

    • data.niaid.nih.gov
    • digitalcommons.chapman.edu
    • +1more
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Chapman University
    Harvard University
    University of Montana
    University of California, Berkeley
    University of California, Davis
    Authors
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

    Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

    Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

  2. Demographic and Health Survey 1998 - Ghana

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://datacatalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  3. Data from: Sample Demographics Dataset

    • kaggle.com
    zip
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nguyễn Thành Nam (2025). Sample Demographics Dataset [Dataset]. https://www.kaggle.com/datasets/nam199245/sample-demographics-dataset
    Explore at:
    zip(241 bytes)Available download formats
    Dataset updated
    Aug 12, 2025
    Authors
    Nguyễn Thành Nam
    Description

    This dataset contains a small sample of demographic information including names, ages, and cities. It is designed as a demonstration dataset for educational purposes, showcasing basic demographic data structure with three individuals from different major US cities. The dataset includes:

    • Name: Individual names (John, Jane, Bob)
    • Age: Ages ranging from 20-30 years
    • City: Major US cities (New York, Los Angeles, Chicago)

    This synthetic dataset can be used for learning basic data analysis techniques, practicing data visualization, or as a starting point for demographic analysis tutorials.

  4. w

    Demographic and Health Survey 2002 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistical Office (GSO) (2023). Demographic and Health Survey 2002 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/1518
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    General Statistical Office (GSO)
    Time period covered
    2002
    Area covered
    Vietnam
    Description

    Abstract

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.

    The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.

    The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).

    The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.

    VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.

    Geographic coverage

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.

    Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.

    In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.

    Mode of data collection

    Face-to-face

    Research instrument

    As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.

    a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.

    b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
    - Respondent's background characteristics (education, residential history, etc.); - Reproductive history; - Contraceptive knowledge and use;
    - Antenatal and delivery care; - Infant feeding practices; - Child immunization; - Fertility preferences and attitudes about family planning; - Husband's background characteristics; - Women's work information; and - Knowledge of AIDS.

    c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.

    Cleaning operations

    The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.

    Response rate

    The results of the household and individual

  5. d

    Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US...

    • datarade.ai
    .csv, .xls
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge, Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US Transaction Data | 100M+ Cards, 12K+ Merchants, Industry, Channel [Dataset]. https://datarade.ai/data-products/consumer-edge-vision-demographic-spending-data-b2c-audience-consumer-edge
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Consumer Edge
    Area covered
    United States of America
    Description

    Demographics Analysis with Consumer Edge Credit & Debit Card Transaction Data

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Transact Signal is an aggregated transaction feed that includes consumer transaction data on 100M+ credit and debit cards, including 14M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 12K+ merchants and deep demographic and geographic breakouts. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.

    Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel

    This data sample illustrates how Consumer Edge data can be used to compare demographics breakdown (age and income excluded in this free sample view) for one company vs. a competitor for a set period of time (Ex: How do demographics like wealth, ethnicity, children in the household, homeowner status, and political affiliation differ for Walmart vs. Target shopper?).

    Inquire about a CE subscription to perform more complex, near real-time demographics analysis functions on public tickers and private brands like: • Analyze a demographic, like age or income, within a state for a company in 2023 • Compare all of a company’s demographics to all of that company’s competitors through most recent history

    Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.

    Use Case: Demographics Analysis

    Problem A global retailer wants to understand company performance by age group.

    Solution Consumer Edge transaction data can be used to analyze shopper transactions by age group to understand: • Overall sales growth by age group over time • Percentage sales growth by age group over time • Sales by age group vs. competitors

    Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key demographic drivers of growth for company-wide reporting • Reduce investment in underperforming age groups, both online and offline • Determine retention by age group to refine campaign strategy • Understand how different age groups are performing compared to key competitors

    Corporate researchers and consumer insights teams use CE Vision for:

    Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts

    Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention

    Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities

    Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring

    Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.

    Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends

    Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period ...

  6. Data from: Census of Population, 1950 [United States]: Public Use Microdata...

    • icpsr.umich.edu
    ascii
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population, 1950 [United States]: Public Use Microdata Sample [Dataset]. http://doi.org/10.3886/ICPSR08251.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8251/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8251/terms

    Time period covered
    1950
    Area covered
    Wisconsin, Ohio, Iowa, New Mexico, Rhode Island, Hawaii, New York (state), Minnesota, Louisiana, United States
    Description

    This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation.

  7. Decennial Census: 110th Congressional District Demographic Profile (Sample)

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: 110th Congressional District Demographic Profile (Sample) [Dataset]. https://catalog.data.gov/dataset/decennial-census-110th-congressional-district-demographic-profile-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 110th Congressional District Summary File (Sample) (110CDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).

  8. i

    Demographic and Health Survey 2000 - Ethiopia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Authority (CSA) (2017). Demographic and Health Survey 2000 - Ethiopia [Dataset]. https://catalog.ihsn.org/index.php/catalog/157
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Central Statistical Authority (CSA)
    Time period covered
    2000
    Area covered
    Ethiopia
    Description

    Abstract

    The principal objective of the Ethiopia Demographic and Health Survey (DHS) is to provide current and reliable data on fertility and family planning behavior, child mortality, children’s nutritional status, the utilization of maternal and child health services, and knowledge of HIV/AIDS. This information is essential for informed policy decisions, planning, monitoring, and evaluation of programs on health in general and reproductive health in particular at both the national and regional levels. A long-term objective of the survey is to strengthen the technical capacity of the Central Statistical Authority to plan, conduct, process, and analyze data from complex national population and health surveys. Moreover, the 2000 Ethiopia DHS is the first survey of its kind in the country to provide national and regional estimates on population and health that are comparable to data collected in similar surveys in other developing countries. As part of the worldwide DHS project, the Ethiopia DHS data add to the vast and growing international database on demographic and health variables. The Ethiopia DHS collected demographic and health information from a nationally representative sample of women and men in the reproductive age groups 15-49 and 15-59, respectively.

    The Ethiopia DHS was carried out under the aegis of the Ministry of Health and was implemented by the Central Statistical Authority. ORC Macro provided technical assistance through its MEASURE DHS+ project. The survey was principally funded by the Essential Services for Health in Ethiopia (ESHE) project through a bilateral agreement between the United States Agency for International Development (USAID) and the Federal Democratic Republic of Ethiopia. Funding was also provided by the United Nations Population Fund (UNFPA).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The Ethiopia DHS used the sampling frame provided by the list of census enumeration areas (EAs) with population and household information from the 1994 Population and Housing Census. A proportional sample allocation was discarded because this procedure yielded a distribution in which 80 percent of the sample came from three regions, 16 percent from four regions and 4 percent from five regions. To avoid such an uneven sample allocation among regions, it was decided that the sample should be allocated by region in proportion to the square root of the region's population size. Additional adjustments were made to ensure that the sample size for each region included at least 700 households, in order to yield estimates with reasonable statistical precision.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The Ethiopia DHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire, which were based on model survey instruments developed for the international MEASURE DHS+ project. The questionnaires were specifically geared toward obtaining the kind of information needed by health and family planning program managers and policymakers. The model questionnaires were then adapted to local conditions and a number of additional questions specific to on-going health and family planning programs in Ethiopia were added. These questionnaires were developed in the English language and translated into the five principal languages in use in the country: Amarigna, Oromigna, Tigrigna, Somaligna, and Afarigna. They were then independently translated back to English and appropriate changes were made in the translation of questions in which the back-translated version did not compare well with the original English version. A pretest of all three questionnaires was conducted in the five local languages in November 1999.

    All usual members in a selected household and visitors who stayed there the previous night were enumerated using the Household Questionnaire. Specifically, the Household Questionnaire obtained information on the relationship to the head of the household, residence, sex, age, marital status, parental survivorship, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. Women age 15-49 in all selected households and all men age 15-59 in every fifth selected household, whether usual residents or visitors, were deemed eligible, and were interviewed. The Household Questionnaire also obtained information on some basic socioeconomic indicators such as the number of rooms, the flooring material, the source of water, the type of toilet facilities, and the ownership of a variety of durable items. Information was also obtained on the use of impregnated bednets, and the salt used in each household was tested for its iodine content. All eligible women and all children born since Meskerem 1987 in the Ethiopian Calendar, which roughly corresponds to September 1994 in the Gregorian Calendar, were weighed and measured.

    The Women’s Questionnaire collected information on female respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunization and health, marriage, fertility preferences, and attitudes about family planning, husband’s background characteristics and women’s work, knowledge of HIV/AIDS and other sexually transmitted infections (STIs).

    The Men’s Questionnaire collected information on the male respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, and knowledge of HIV/AIDS and STIs.

    Response rate

    A total of 14,642 households were selected for the Ethiopia DHS, of which 14,167 were found to be occupied. Household interviews were completed for 99 percent of the occupied households. A total of 15,716 eligible women from these households and 2,771 eligible men from every fifth household were identified for the individual interviews. The response rate for eligible women is slightly higher than for eligible men (98 percent compared with 94 percent, respectively). Interviews were successfully completed for 15,367 women and 2,607 men.

    There is no difference by urban-rural residence in the overall response rate for eligible women; however, rural men are slightly more likely than urban men to have completed an interview (94 percent and 92 percent, respectively). The overall response rate among women by region is relatively high and ranges from 93 percent in the Affar Region to 99 percent in the Oromiya Region. The response rate among men ranges from 83 percent in the Affar Region to 98 percent in the Tigray and Benishangul-Gumuz regions.

    Note: See summarized response rates by place of residence in Table A.1.1 and Table A.1.2 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Ethiopia DHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the Ethiopia DHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the Ethiopia DHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the Ethiopia DHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age

  9. d

    ACS 5-Year Demographic Characteristics DC

    • catalog.data.gov
    • datalumos.org
    • +6more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-5-year-demographic-characteristics-dc
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  10. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  11. w

    Demographic and Health Survey 2015-2016 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +2more
    Updated Jan 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (MOH) (2019). Demographic and Health Survey 2015-2016 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2893
    Explore at:
    Dataset updated
    Jan 9, 2019
    Dataset provided by
    Ministry of Health (MOH)
    National Statistical Service (NSSS)
    Time period covered
    2015 - 2016
    Area covered
    Armenia
    Description

    Abstract

    The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.

    The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.

    The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.

    The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.

    Cleaning operations

    The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.

    Response rate

    A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).

    In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).

    The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.

    Sampling error estimates

    SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months

    See details of the data quality tables in Appendix C of the survey final report.

  12. S

    San Joaquin County Demographic Data (ACS 1-Year Estimates)

    • opendata.sjgov.org
    csv
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Survey Data (2025). San Joaquin County Demographic Data (ACS 1-Year Estimates) [Dataset]. https://opendata.sjgov.org/dataset/demographic-data
    Explore at:
    csv(3644), csv(2488), csv(4707)Available download formats
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    Survey Data
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    San Joaquin County
    Description

    This dataset provides demographic statistics for San Joaquin County CA, based on the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.

  13. ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05)

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-demographic-characteristics-dp05-7a484
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  14. d

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    GIS Data attributes include:

    1. Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    2. Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    3. Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    4. Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    5. Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    6. Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    7. Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    8. Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for GapMaps GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  15. Demographic and Health Survey 2017 - 2018 - Albania

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics (INSTAT) (2019). Demographic and Health Survey 2017 - 2018 - Albania [Dataset]. https://catalog.ihsn.org/catalog/7962
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Institute of Statisticshttps://www.instat.gov.al/
    Institute of Public Health (IPH)
    Time period covered
    2017 - 2018
    Area covered
    Albania
    Description

    Abstract

    The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.

    The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.

    The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.

    All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.

    Cleaning operations

    Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.

    Response rate

    A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.

    Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  16. f

    Demographic data of the total study sample and each group.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Kort, Yvonne A. W.; Broersma, Rémy C.; Huiberts, Laura M.; Smolders, Karin C. H. J.; van der Zande, Bianca M. I. (2023). Demographic data of the total study sample and each group. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001069105
    Explore at:
    Dataset updated
    Mar 31, 2023
    Authors
    de Kort, Yvonne A. W.; Broersma, Rémy C.; Huiberts, Laura M.; Smolders, Karin C. H. J.; van der Zande, Bianca M. I.
    Description

    Demographic data of the total study sample and each group.

  17. Demographic and Health Survey 2008 - Turkiye

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (2022). Demographic and Health Survey 2008 - Turkiye [Dataset]. https://catalog.ihsn.org/catalog/5517
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Hacettepe University Institute of Population Studies
    Time period covered
    2008
    Area covered
    Türkiye
    Description

    Abstract

    The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.

    The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).

    Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Kind of data

    Sample survey data

    Mode of data collection

    Face-to-face

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.

    The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.

    b) The Individual Questionnaire for ever-married women obtained information on the following subjects: - Background characteristics - Reproduction - Marriage - Knowledge and use of family planning - Maternal care and breastfeeding - Immunization and health - Fertility preferences - Husband's background
    - Women's work and status - Sexually transmitted diseases and AIDS - Maternal and child anthropometry.

    Cleaning operations

    The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.

  18. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  19. f

    Demographic data.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 26, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Yong; Teng, Shin; Wu, Yu-Te; He, Yong; Lin, Chia-Shu; Lu, Chia-Feng; Ju, Tzong-Ching; Hsieh, Jen-Chuen; Huang, Wei-Yuan; Jiang, Tianzi (2013). Demographic data. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001636655
    Explore at:
    Dataset updated
    Jun 26, 2013
    Authors
    Liu, Yong; Teng, Shin; Wu, Yu-Te; He, Yong; Lin, Chia-Shu; Lu, Chia-Feng; Ju, Tzong-Ching; Hsieh, Jen-Chuen; Huang, Wei-Yuan; Jiang, Tianzi
    Description

    **P<0.01; SD, standard deviation; Max/Min, maximal/minimal.The number of participants did not differ between genders (Chi-square P>0.05). The dancer and pianist groups were significantly younger than the control group (two-tailed two-sample t test; dancer, t(55) = 6.94, P<0.001; pianists, t(54) = 3.84, P<0.001). The duration of learning differed among the three artist groups (one-way ANOVA, F(2,84) = 16.96, P<0.001). Post-hoc analysis using the Tukey HSD test revealed that the pianists had a longer duration of learning than the painters (P<0.001) and the dancers (P<0.001). There was no difference in the duration of learning between the painters and the dancers. The relatively younger age and preponderance of females in our artist sample group largely reflects the demographics of artist education in Taiwan. All the professional artists enrolled in this study were art students of art universities of Taiwan (mainly from Taipei National University of Arts). All students have been receiving special and dedicated programs of arts with stringent training and continuous education since primary school. More specifically, the program for the dancers is a unified system integrating high school and university education together.

  20. d

    US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and...

    • datarade.ai
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giant Partners (2025). US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and Email Marketing Automation [Dataset]. https://datarade.ai/data-products/us-consumer-demographic-data-269m-consumer-records-progr-giant-partners
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Giant Partners
    Area covered
    United States of America
    Description

    Premium B2C Consumer Database - 269+ Million US Records

    Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.

    Core Database Statistics

    Consumer Records: Over 269 million

    Email Addresses: Over 160 million (verified and deliverable)

    Phone Numbers: Over 76 million (mobile and landline)

    Mailing Addresses: Over 116,000,000 (NCOA processed)

    Geographic Coverage: Complete US (all 50 states)

    Compliance Status: CCPA compliant with consent management

    Targeting Categories Available

    Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)

    Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options

    Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics

    Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting

    Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting

    Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors

    Multi-Channel Campaign Applications

    Deploy across all major marketing channels:

    Email marketing and automation

    Social media advertising

    Search and display advertising (Google, YouTube)

    Direct mail and print campaigns

    Telemarketing and SMS campaigns

    Programmatic advertising platforms

    Data Quality & Sources

    Our consumer data aggregates from multiple verified sources:

    Public records and government databases

    Opt-in subscription services and registrations

    Purchase transaction data from retail partners

    Survey participation and research studies

    Online behavioral data (privacy compliant)

    Technical Delivery Options

    File Formats: CSV, Excel, JSON, XML formats available

    Delivery Methods: Secure FTP, API integration, direct download

    Processing: Real-time NCOA, email validation, phone verification

    Custom Selections: 1,000+ selectable demographic and behavioral attributes

    Minimum Orders: Flexible based on targeting complexity

    Unique Value Propositions

    Dual Spouse Targeting: Reach both household decision-makers for maximum impact

    Cross-Platform Integration: Seamless deployment to major ad platforms

    Real-Time Updates: Monthly data refreshes ensure maximum accuracy

    Advanced Segmentation: Combine multiple targeting criteria for precision campaigns

    Compliance Management: Built-in opt-out and suppression list management

    Ideal Customer Profiles

    E-commerce retailers seeking customer acquisition

    Financial services companies targeting specific demographics

    Healthcare organizations with compliant marketing needs

    Automotive dealers and service providers

    Home improvement and real estate professionals

    Insurance companies and agents

    Subscription services and SaaS providers

    Performance Optimization Features

    Lookalike Modeling: Create audiences similar to your best customers

    Predictive Scoring: Identify high-value prospects using AI algorithms

    Campaign Attribution: Track performance across multiple touchpoints

    A/B Testing Support: Split audiences for campaign optimization

    Suppression Management: Automatic opt-out and DNC compliance

    Pricing & Volume Options

    Flexible pricing structures accommodate businesses of all sizes:

    Pay-per-record for small campaigns

    Volume discounts for large deployments

    Subscription models for ongoing campaigns

    Custom enterprise pricing for high-volume users

    Data Compliance & Privacy

    VIA.tools maintains industry-leading compliance standards:

    CCPA (California Consumer Privacy Act) compliant

    CAN-SPAM Act adherence for email marketing

    TCPA compliance for phone and SMS campaigns

    Regular privacy audits and data governance reviews

    Transparent opt-out and data deletion processes

    Getting Started

    Our data specialists work with you to:

    1. Define your target audience criteria

    2. Recommend optimal data selections

    3. Provide sample data for testing

    4. Configure delivery methods and formats

    5. Implement ongoing campaign optimization

    Why We Lead the Industry

    With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.

    Contact our team to discuss your specific ta...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K

Demographic data collection in STEM organizations

Explore at:
zipAvailable download formats
Dataset updated
Mar 9, 2022
Dataset provided by
Chapman University
Harvard University
University of Montana
University of California, Berkeley
University of California, Davis
Authors
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

Search
Clear search
Close search
Google apps
Main menu