100+ datasets found
  1. n

    Demographic data collection in STEM organizations

    • data.niaid.nih.gov
    • digitalcommons.chapman.edu
    • +3more
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    University of California, Davis
    Harvard University
    University of Montana
    Chapman University
    University of California, Berkeley
    Authors
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

    Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

    Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

  2. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  3. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  4. S

    San Joaquin County Demographic Data (ACS 1-Year Estimates)

    • opendata.sjgov.org
    csv
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Survey Data (2025). San Joaquin County Demographic Data (ACS 1-Year Estimates) [Dataset]. https://opendata.sjgov.org/dataset/demographic-data
    Explore at:
    csv(4707), csv(3644), csv(2488)Available download formats
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    Survey Data
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    San Joaquin County
    Description

    This dataset provides demographic statistics for San Joaquin County CA, based on the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.

  5. w

    Demographic and Health Survey 1996 - Uzbekistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Obstetrics & Gynecology (2017). Demographic and Health Survey 1996 - Uzbekistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/1516
    Explore at:
    Dataset updated
    Jun 21, 2017
    Dataset authored and provided by
    Institute of Obstetrics & Gynecology
    Time period covered
    1996
    Area covered
    Uzbekistan
    Description

    Abstract

    The 1996 Uzbekistan Demographic and Health Survey (UDHS) is a nationally representative survey of 4,415 women age 15-49. Fieldwork was conducted from June to October 1996. The UDHS was sponsored by the Ministry of Health (MOH), and was funded by the United States Agency for International Development. The Institute of Obstetrics and Gynecology implemented the survey with technical assistance from the Demographic and Health Surveys (DHS) program.

    The 1996 UDHS was the first national-level population and health survey in Uzbekistan. It was implemented by the Research Institute of Obstetrics and Gynecology of the Ministry of Health of Uzbekistan. The 1996 UDHS was funded by the United States Agency for International development (USAID) and technical assistance was provided by Macro International Inc. (Calverton, Maryland USA) through its contract with USAID.

    OBJECTIVES AND ORGANIZATION OF THE SURVEY

    The purpose of the 1996 Uzbekistan Demographic and Health Survey (UDHS) was to provide an information base to the Ministry of Health for the planning of policies and programs regarding the health of women and their children. The UDHS collected data on women's reproductive histories, knowledge and use of contraception, breastfeeding practices, and the nutrition, vaccination coverage, and episodes of illness among children under the age of three. The survey also included, for all women of reproductive age and for children under the age of three, the measurement of the hemoglobin level in the blood to assess the prevalence of anemia and measurements of height and weight to assess nutritional status.

    A secondary objective of the survey was to enhance the capabilities of institutions in Uzbekistan to collect, process and analyze population and health data so as to facilitate the implementation of future surveys of this type.

    MAIN RESULTS

    • Fertility Rates. Survey results indicate a total fertility rate (TFR) for all of Uzbekistan of 3.3 children per woman. Fertility levels differ for different population groups. The TFR for women living in urbml areas (2.7 children per woman) is substantially lower than for women living in rural areas (3.7). The TFR for Uzbeki women (3.5 children per woman) is higher than for women of other ethnicities (2.5). Among the regions of Uzbekistan, the TFR is lowest in Tashkent City (2.3 children per woman).
    • Family Planning. Knowledge. Knowledge of contraceptive methods is high among women in Uzbekistan. Knowledge of at least one method is 89 percent. High levels of knowledge are the norm for women of all ages, all regions of the country, all educational levels, and all ethnicities. However, knowledge of sterilization was low; only 27 percent of women reported knowing of this method.
    • Fertility Preferences. A majority of women in Uzbekistan (51 percent) indicated that they desire no more children. Among women age 30 and above, the proportion that want no more children increases to 75 percent. Thus, many women come to the preference to stop childbearing at relatively young ages when they have 20 or more potential years of childbearing ahead of them. For some of these women, the most appropriate method of contraception may be a long-acting method such as female sterilization, However, there is a deficiency of both knowledge and use of this method in Uzbekistan. In the interest of providing couples with a broad choice of safe and effective methods, information about this method and access to it should be made available so that informed choices about its suitability can be made by individual women and couples.
    • Induced Aboration : Abortion Rates. From the UDHS data, the total abortion rate (TAR)--the number of abortions a woman will have in her lifetime based on the currently prevailing abortion rates--was calculated. For Uzbekistan, the TAR for the period from mid-1993 to mid-1996 is 0.7 abortions per woman. As expected, the TAR for Uzbekistan is substantially lower than recent estimates of the TAR for other areas of the former Soviet Union such as Kazakstan (1.8), Romania (3.4 abortions per woman), and Yekaterinburg and Perm in Russia (2.3 and 2.8, respectively).
    • Infant mortality : In the UDHS, infant mortality data were collected based on the international definition of a live birth which, irrespective of the duration of pregnancy, is a birth that breathes or shows any sign of life (United Nations, 1992).
    • Mortality Rates. For the five-year period before the survey (i.e., approximately mid- 1992 to mid- 1996), infant mortality in Uzbekistan is estimated at 49 infant deaths per 1,000 births. The estimates of neonatal and postneonatal mortality are 23 and 26 per 1,000.
    • Maternal and child health : Uzbekistan has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. This system includes special delivery hospitals, the obstetrics and gynecology departments of general hospitals, women's consulting centers, and doctor's assistant/midwife posts (FAPs). There is an extensive network of FAPs throughout rural areas.
    • Nutrition : Breastfeeding. Breastfeeding is almost universal in Uzbekistan; 96 percent of children born in the three years preceding the survey are breastfed. Overall, 19 percent of children are breastfed within an hour of delivery and 40 percent within 24 hours of delivery. The median duration of breastfeeding is lengthy (17 months). However, durations of exclusive breastfeeding, as recommended by WHO, are short (0.4 months).
    • Prevalence of anemia : Testing of women and children for anemia was one of the major efforts of the 1996 UDHS. Anemia has been considered a major public health problem in Uzbekistan for decades. Nevertheless, this was the first anemia study in Uzbekistan done on a national basis. The study involved hemoglobin (Hb) testing for anemia using the Hemocue system. Women. Sixty percent of the women in Uzbekistan suffer from some degree of anemia. The great majority of these women have either mild (45 percent) or moderate anemia (14 percent). One percent have severe anemia.

    Geographic coverage

    National Seven raions were excluded from the survey because they were considered too remote and sparsely inhabited.

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1996 UDHS is defined as the universe of all women age 15-49 in Uzbekistan

    Kind of data

    Sample survey data

    Sampling procedure

    The UDHS employed a probability sample of women age 15 to 49, representative of 98.7 percent of the country. Seven raions were excluded from the survey because they were considered too remote and sparsely inhabited. These raions are: Kungradskiyi, Muyinakskiyi, and Takhtakupyrskiyi in Karakalpakstan; Uchkudukskiyi, Tamdynskiyi, and Kanimekhskiyi in Navoiiskaya; and Romitanskiyi in Bukharskaya. The remainder of the country was divided into five survey regions. Tashkent City constituted a survey region by itself, while the remaining four survey regions consisted of groups of contiguous oblasts. The five survey regions were defined as follows: Region 1: Karakalpakstan and Khoresmskaya. Region 2: Navoiyiskaya, Bukharskaya, Kashkadarinskaya, and Surkhandarinskaya. Region 3: Samarkandskaya, Dzhizakskaya, Syrdarinskaya, and Tashkentskaya. Region 4: Namanganskaya, Ferganskaya, and Andizhanskaya. Region 5: Tashkent City.

    CHARACTERISTICS OF THE UDHS SAMPLE

    The sample for the UDHS was selected in three stages. In the rural areas, the primary sampling units (PSUs) corresponded to the raions which were selected with probabilities proportional to size, the size being the 1994 population. At the second stage, one village was selected in each selected raion. A complete listing of the households residing in each selected village was carried out. The lists of households obtained were used as the frame for third-stage sampling, which is the selection of the households to be visited by the UDHS interviewing teams during the main survey fieldwork. In each selected household, women between the ages of 15 and 49 were identified and interviewed.

    In the urban areas, the PSUs were the cities and towns themselves. In the second stage, one health block was selected from each town except in self-representing cities (large cities that were selected with certainty), where more than one health block was selected. The selected health blocks were segmented prior to the household listing operation which provided the household lists for the third-stage selection of households.

    SAMPLE ALLOCATION

    The regions, stratified by urban and rural areas, were the sampling strata. There were thus nine strata with Tashkent City constituting an entire stratum. A proportional allocation of the target number of 4,000 women to the 9 strata would yield the sample distribution.

    The proportional allocation would result in a completely self-weighting sample but would not allow for reliable estimates for at least two of the five survey regions, namely Region 1 and Tashkent City. Results of other demographic and health surveys show that a minimum sample of 1,000 women is required in order to obtain estimates of fertility and childhood mortality rates at an acceptable level of sampling errors. Given that the total sample size for the UDHS could not he increased so as to achieve the required level of sampling errors, it was decided that the sample would be divided equally among the five regions, and within each region, it would be distributed proportionally to the urban and the rural areas. With this type of allocation, demographic rates (fertility and mortality) could not be produced for regions separately.

    The number of sample points (or clusters) to be selected for each stratum was calculated by dividing the

  6. d

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    GIS Data attributes include:

    1. Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    2. Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    3. Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    4. Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    5. Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    6. Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    7. Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    8. Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for GapMaps GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  7. Demographic and Health Survey 2008 - Turkiye

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (2022). Demographic and Health Survey 2008 - Turkiye [Dataset]. https://catalog.ihsn.org/catalog/5517
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Hacettepe University Institute of Population Studies
    Time period covered
    2008
    Area covered
    Türkiye
    Description

    Abstract

    The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.

    The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).

    Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Kind of data

    Sample survey data

    Mode of data collection

    Face-to-face

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.

    The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.

    b) The Individual Questionnaire for ever-married women obtained information on the following subjects: - Background characteristics - Reproduction - Marriage - Knowledge and use of family planning - Maternal care and breastfeeding - Immunization and health - Fertility preferences - Husband's background
    - Women's work and status - Sexually transmitted diseases and AIDS - Maternal and child anthropometry.

    Cleaning operations

    The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.

  8. d

    Demographic Data | USA Coverage

    • datarade.ai
    .csv
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BIGDBM (2025). Demographic Data | USA Coverage [Dataset]. https://datarade.ai/data-products/bigdbm-us-consumer-demographics-core-package-bigdbm
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    BIGDBM
    Area covered
    United States
    Description

    The Consumer Demographic database is comprised of over 80 sources and includes over 400 different data points for each individual in a household with complete PII. The fields provided include demographics, psychographic, lifestyle criteria, buying behavior, and real property identification.

    Each record is ranked by confidence and only the highest quality data is used. The database is multi-sourced and contains both compiled and originated U.S. data. Additionally, the data goes through intensive cleansing including deceased processing and NCOA.

    BIGDBM Privacy Policy: https://bigdbm.com/privacy.html

  9. d

    Demographic Data Append (Age, Gender, Marital Status, etc) Append API, USA,...

    • datarade.ai
    .json, .csv
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Versium (2023). Demographic Data Append (Age, Gender, Marital Status, etc) Append API, USA, CCPA Compliant [Dataset]. https://datarade.ai/data-products/versium-reach-consumer-basic-demographic-age-gender-mari-versium
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Versium
    Area covered
    United States
    Description

    With Versium REACH Demographic Append you will have access to many different attributes for enriching your data.

    Basic, Household and Financial, Lifestyle and Interests, Political and Donor.

    Here is a list of what sorts of attributes are available for each output type listed above:

    Basic: - Senior in Household - Young Adult in Household - Small Office or Home Office - Online Purchasing Indicator
    - Language - Marital Status - Working Woman in Household - Single Parent - Online Education - Occupation - Gender - DOB (MM/YY) - Age Range - Religion - Ethnic Group - Presence of Children - Education Level - Number of Children

    Household, Financial and Auto: - Household Income - Dwelling Type - Credit Card Holder Bank - Upscale Card Holder - Estimated Net Worth - Length of Residence - Credit Rating - Home Own or Rent - Home Value - Home Year Built - Number of Credit Lines - Auto Year - Auto Make - Auto Model - Home Purchase Date - Refinance Date - Refinance Amount - Loan to Value - Refinance Loan Type - Home Purchase Price - Mortgage Purchase Amount - Mortgage Purchase Loan Type - Mortgage Purchase Date - 2nd Most Recent Mortgage Amount - 2nd Most Recent Mortgage Loan Type - 2nd Most Recent Mortgage Date - 2nd Most Recent Mortgage Interest Rate Type - Refinance Rate Type - Mortgage Purchase Interest Rate Type - Home Pool

    Lifestyle and Interests: - Mail Order Buyer - Pets - Magazines - Reading
    - Current Affairs and Politics
    - Dieting and Weight Loss - Travel - Music - Consumer Electronics - Arts
    - Antiques - Home Improvement - Gardening - Cooking - Exercise
    - Sports - Outdoors - Womens Apparel
    - Mens Apparel - Investing - Health and Beauty - Decorating and Furnishing

    Political and Donor: - Donor Environmental - Donor Animal Welfare - Donor Arts and Culture - Donor Childrens Causes - Donor Environmental or Wildlife - Donor Health - Donor International Aid - Donor Political - Donor Conservative Politics - Donor Liberal Politics - Donor Religious - Donor Veterans - Donor Unspecified - Donor Community - Party Affiliation

  10. Decennial Census: 110th Congressional District Demographic Profile (Sample)

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: 110th Congressional District Demographic Profile (Sample) [Dataset]. https://catalog.data.gov/dataset/decennial-census-110th-congressional-district-demographic-profile-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 110th Congressional District Summary File (Sample) (110CDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).

  11. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  12. Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred...

    • icpsr.umich.edu
    ascii
    Updated Jan 18, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 1960 Public Use Sample: One-in-One-Hundred Sample [Dataset]. http://doi.org/10.3886/ICPSR07756.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7756/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7756/terms

    Time period covered
    1960
    Area covered
    Illinois, Idaho, Utah, Massachusetts, South Carolina, Washington, Wyoming, New Hampshire, Montana, District of Columbia
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University.

  13. Census of Population and Housing, 1950: Public Use Microdata Sample

    • archive.ciser.cornell.edu
    Updated Feb 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1950: Public Use Microdata Sample [Dataset]. http://doi.org/10.6077/j5/0mbave
    Explore at:
    Dataset updated
    Feb 20, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Household, Individual
    Description

    This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08251.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  14. c

    Census of Population and Housing, 1960: Public Use Sample, 1 in 100

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1960: Public Use Sample, 1 in 100 [Dataset]. http://doi.org/10.6077/j5/ohycfx
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual, Household
    Description

    This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  15. i

    Demographic and Health Survey 1991 - Indonesia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (BPS) (2019). Demographic and Health Survey 1991 - Indonesia [Dataset]. https://catalog.ihsn.org/catalog/2484
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Central Bureau of Statistics (BPS)
    Ministry of Health
    National Family Planning Coordinating Board (NFPCB)
    Time period covered
    1991
    Area covered
    Indonesia
    Description

    Abstract

    The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.

    The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.

    In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.

    The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:

    • Java-Bali: Jakarta, West Java, Central Java, Yogyakarta, East Java, and Bali
    • Outer Java-Bali I: Aceh, North Sumatra, West Sumatra, South Sumatra, Lampung, West Kalimantan, South Kalimantan, North Sulawesi, South Sulawesi, and West Nusa Tenggara
    • Outer Java-Bali II: Riau, Jambi, Bengkulu, East Nusa Tenggara, East Timor, Central Kalimantan, East Kalimantan, Central Sulawesi, Southeast Sulawesi, Maluku, and Irian Jaya.

    The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.

    In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.

    Cleaning operations

    The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).

    Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.

    Response rate

    Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.

    Note: See summarized response rates by place of residence in Table 1.2 of the survey report.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.

    Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.

    If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  16. Sample data for analysis of demographic potential of the 15-minute city in...

    • zenodo.org
    bin, txt
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joan Perez; Joan Perez; Giovanni Fusco; Giovanni Fusco (2024). Sample data for analysis of demographic potential of the 15-minute city in northern and southern France [Dataset]. http://doi.org/10.5281/zenodo.13456826
    Explore at:
    bin, txtAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joan Perez; Joan Perez; Giovanni Fusco; Giovanni Fusco
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    France, Southern France
    Description
    This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France. 
    The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
    extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
    Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
    (Geopackage "DPC_06.gpkg").
     
    Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
     
    Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
     
    1. The identification of main streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo") 
    https://plugins.qgis.org/plugins/morpheo/
    2. The identification of main streets in local contexts – connectivity locally weighted (layer "road_LocRelCon")
    3. Basic morphometry of buildings (layer "building_morpho")
    4. Evaluation of the number of dwellings within inhabited buildings (layer "building_dwellings")
    5. Projecting population potential accessible from main streets (layer "road_pop_results")
     
    Project website: http://emc2-dut.org/
     
    Publications using this sample data: 
    Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.

    Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.

  17. d

    Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US...

    • datarade.ai
    .csv, .xls
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge, Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US Transaction Data | 100M+ Cards, 12K+ Merchants, Industry, Channel [Dataset]. https://datarade.ai/data-products/consumer-edge-vision-demographic-spending-data-b2c-audience-consumer-edge
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Consumer Edge
    Area covered
    United States
    Description

    Demographics Analysis with Consumer Edge Credit & Debit Card Transaction Data

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Transact Signal is an aggregated transaction feed that includes consumer transaction data on 100M+ credit and debit cards, including 14M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 12K+ merchants and deep demographic and geographic breakouts. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.

    Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel

    This data sample illustrates how Consumer Edge data can be used to compare demographics breakdown (age and income excluded in this free sample view) for one company vs. a competitor for a set period of time (Ex: How do demographics like wealth, ethnicity, children in the household, homeowner status, and political affiliation differ for Walmart vs. Target shopper?).

    Inquire about a CE subscription to perform more complex, near real-time demographics analysis functions on public tickers and private brands like: • Analyze a demographic, like age or income, within a state for a company in 2023 • Compare all of a company’s demographics to all of that company’s competitors through most recent history

    Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.

    Use Case: Demographics Analysis

    Problem A global retailer wants to understand company performance by age group.

    Solution Consumer Edge transaction data can be used to analyze shopper transactions by age group to understand: • Overall sales growth by age group over time • Percentage sales growth by age group over time • Sales by age group vs. competitors

    Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key demographic drivers of growth for company-wide reporting • Reduce investment in underperforming age groups, both online and offline • Determine retention by age group to refine campaign strategy • Understand how different age groups are performing compared to key competitors

    Corporate researchers and consumer insights teams use CE Vision for:

    Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts

    Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention

    Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities

    Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring

    Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.

    Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends

    Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period ...

  18. ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05)

    • catalog.data.gov
    • data-nces.opendata.arcgis.com
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-demographic-characteristics-dp05-7a484
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  19. f

    Patient demographic data (for n = 171 patients).

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Myres W. Tilghman; Susanne May; Josué Pérez-Santiago; Caroline C. Ignacio; Susan J. Little; Douglas D. Richman; Davey M. Smith (2023). Patient demographic data (for n = 171 patients). [Dataset]. http://doi.org/10.1371/journal.pone.0035401.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Myres W. Tilghman; Susanne May; Josué Pérez-Santiago; Caroline C. Ignacio; Susan J. Little; Douglas D. Richman; Davey M. Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MSM = men who have sex with men; IDU = injection drug users.§Age was determined at the time of acquisition of the first chronological sample collected from an individual patient that was included in the analysis.

  20. f

    Demographic data for survey sample.

    • plos.figshare.com
    xls
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leah Salzano; Nithya Narayanan; Emily R. Tobik; Sumaira Akbarzada; Yanjun Wu; Sarah Megiel; Brittany Choate; Anne L. Wyllie (2024). Demographic data for survey sample. [Dataset]. http://doi.org/10.1371/journal.pgph.0003547.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset provided by
    PLOS Global Public Health
    Authors
    Leah Salzano; Nithya Narayanan; Emily R. Tobik; Sumaira Akbarzada; Yanjun Wu; Sarah Megiel; Brittany Choate; Anne L. Wyllie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Public perception regarding diagnostic sample types as well as personal experiences can influence willingness to test. As such, public preferences for specific sample type(s) should be used to inform diagnostic and surveillance testing programs to improve public health response efforts. To understand where preferences lie, we conducted an international survey regarding the sample types used for SARS-CoV-2 tests. A Qualtrics survey regarding SARS-CoV-2 testing preferences was distributed via social media and email. The survey collected preferences regarding sample methods and key demographic data. Python was used to analyze survey responses. From March 30th to June 15th, 2022, 2,094 responses were collected from 125 countries. Participants were 55% female and predominantly aged 25–34 years (27%). Education and employment were skewed: 51% had graduate degrees, 26% had bachelor’s degrees, 27% were scientists/researchers, and 29% were healthcare workers. By rank sum analysis, the most preferred sample type globally was the oral swab, followed by saliva, with parents/guardians preferring saliva-based testing for children. Respondents indicated a higher degree of trust in PCR testing (84%) vs. rapid antigen testing (36%). Preferences for self- or healthcare worker-collected sampling varied across regions. This international survey identified a preference for oral swabs and saliva when testing for SARS-CoV-2. Notably, respondents indicated that if they could be assured that all sample types performed equally, then saliva was preferred. Overall, survey responses reflected the region-specific testing experiences during the COVID-19. Public preferences should be considered when designing future response efforts to increase utilization, with oral sample types (either swabs or saliva) providing a practical option for large-scale, accessible diagnostic testing.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K

Demographic data collection in STEM organizations

Explore at:
zipAvailable download formats
Dataset updated
Mar 9, 2022
Dataset provided by
University of California, Davis
Harvard University
University of Montana
Chapman University
University of California, Berkeley
Authors
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

Search
Clear search
Close search
Google apps
Main menu