100+ datasets found
  1. n

    Demographic data collection in STEM organizations

    • data.niaid.nih.gov
    • digitalcommons.chapman.edu
    • +3more
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Harvard University
    University of Montana
    University of California, Davis
    University of California, Berkeley
    Chapman University
    Authors
    Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

    Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

    Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

  2. a

    Spanish TEDS Comprehensive Demographic Questions

    • cotgis.hub.arcgis.com
    • teds.tucsonaz.gov
    Updated Mar 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Spanish TEDS Comprehensive Demographic Questions [Dataset]. https://cotgis.hub.arcgis.com/documents/a567e6a6b1704c68a8aabf08b1e65080
    Explore at:
    Dataset updated
    Mar 14, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Includes questions written in Spanish pertaining to: race & ethnicitygendersexual orientationagetribal affiliationdisabilityincomehouseholdlanguagelocationeducationhousing statustransportationemployment status

  3. d

    Mayor’s Office of Operations: Demographic Survey

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Mayor’s Office of Operations: Demographic Survey [Dataset]. https://catalog.data.gov/dataset/mayors-office-of-operations-demographic-survey
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated

  4. Data from: Current Population Survey, March/April 2008 Match Files: Child...

    • icpsr.umich.edu
    Updated Dec 6, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2010). Current Population Survey, March/April 2008 Match Files: Child Support Supplement [Dataset]. http://doi.org/10.3886/ICPSR29646.v1
    Explore at:
    Dataset updated
    Dec 6, 2010
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/29646/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/29646/terms

    Time period covered
    Mar 2007 - Apr 2008
    Area covered
    United States
    Description

    This data collection is comprised of responses from the March and April installments of the 2008 Current Population Survey (CPS). Both the March and April surveys used two sets of questions, the basic CPS and a separate supplement for each month.The CPS, administered monthly, is a labor force survey providing current estimates of the economic status and activities of the population of the United States. Specifically, the CPS provides estimates of total employment (both farm and nonfarm), nonfarm self-employed persons, domestics, and unpaid helpers in nonfarm family enterprises, wage and salaried employees, and estimates of total unemployment.In addition to the basic CPS questions, respondents were asked questions from the March supplement, known as the Annual Social and Economic (ASEC) supplement. The ASEC provides supplemental data on work experience, income, noncash benefits, and migration. Comprehensive work experience information was given on the employment status, occupation, and industry of persons 15 years old and older. Additional data for persons 15 years old and older are available concerning weeks worked and hours per week worked, reason not working full time, total income and income components, and place of residence on March 1, 2007. The March supplement also contains data covering nine noncash income sources: food stamps, school lunch program, employer-provided group health insurance plan, employer-provided pension plan, personal health insurance, Medicaid, Medicare, CHAMPUS or military health care, and energy assistance. Questions covering training and assistance received under welfare reform programs, such as job readiness training, child care services, or job skill training were also asked in the March supplement.The April supplement, sponsored by the Department of Health and Human Services, queried respondents on the economic situation of persons and families for the previous year. Moreover, all household members 15 years of age and older that are a biological parent of children in the household that have an absent parent were asked detailed questions about child support and alimony. Information regarding child support was collected to determine the size and distribution of the population with children affected by divorce or separation, or other relationship status change. Moreover, the data were collected to better understand the characteristics of persons requiring child support, and to help develop and maintain programs designed to assist in obtaining child support. These data highlight alimony and child support arrangements made at the time of separation or divorce, amount of payments actually received, and value and type of any property settlement.The April supplement data were matched to March supplement data for households that were in the sample in both March and April 2008. In March 2008, there were 4,522 household members eligible, of which 1,431 required imputation of child support data. When matching the March 2008 and April 2008 data sets, there were 170 eligible people on the March file that did not match to people on the April file. Child support data for these 170 people were imputed. The remaining 1,261 imputed cases were due to nonresponse to the child support questions. Demographic variables include age, sex, race, Hispanic origin, marital status, veteran status, educational attainment, occupation, and income. Data on employment and income refer to the preceding year, although other demographic data refer to the time at which the survey was administered.

  5. Data from: Survey: Open Science in Higher Education

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
    • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
    • Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

    • Natural Sciences
    • Arts and Humanities or Social Sciences
    • Economics
    • Law
    • Medicine
    • Computer Sciences, Engineering, Technics
    • Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

    • Professor
    • Special education teacher
    • Academic/scientific assistant or research fellow (research and teaching)
    • Academic staff (teaching)
    • Student assistant
    • Other

    We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

  6. i

    Demographic and Health Survey 1998 - Ghana

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2019). Demographic and Health Survey 1998 - Ghana [Dataset]. https://dev.ihsn.org/nada/catalog/study/GHA_1998_DHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  7. a

    TEDS Comprehensive Demographic Questions Survey123 Connect Template

    • cotgis.hub.arcgis.com
    Updated Jan 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). TEDS Comprehensive Demographic Questions Survey123 Connect Template [Dataset]. https://cotgis.hub.arcgis.com/documents/0c78f4f2dc3241d9addcc8ffaef5b698
    Explore at:
    Dataset updated
    Jan 30, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Includes questions pertaining to: race & ethnicitygenderpreferred pronounssexual orientationagetribal affiliationdisabilityincomehouseholdlanguagelocationeducationhousing statustransportationemployment status

  8. l

    The STAMINA study: questionnaire for survey 3

    • repository.lboro.ac.uk
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed Kanashiro (2025). The STAMINA study: questionnaire for survey 3 [Dataset]. http://doi.org/10.17028/rd.lboro.21740921.v1
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Loughborough University
    Authors
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed Kanashiro
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The STAMINA study examined the nutritional risks of low-income peri-urban mothers, infants and young children (IYC), and households in Peru during the COVID-19 pandemic. The study was designed to capture information through three, repeated cross-sectional surveys at approximately 6 month intervals over an 18 month period, starting in December 2020. The surveys were carried out by telephone in November-December 2020, July-August 2021 and in February-April 2022. The third survey took place over a longer period to allow for a household visit after the telephone interview.The study areas were Manchay (Lima) and Huánuco district in the Andean highlands (~ 1900m above sea level).In each study area, we purposively selected the principal health centre and one subsidiary health centre. Peri-urban communities under the jurisdiction of these health centres were then selected to participate. Systematic random sampling was employed with quotas for IYC age (6-11, 12-17 and 18-23 months) to recruit a target sample size of 250 mother-infant pairs for each survey.Data collected included: household socio-demographic characteristics; infant and young child feeding practices (IYCF), child and maternal qualitative 24-hour dietary recalls/7 day food frequency questionnaires, household food insecurity experience measured using the validated Food Insecurity Experience Scale (FIES) survey module (Cafiero, Viviani, & Nord, 2018), and maternal mental health.In addition, questions that assessed the impact of COVID-19 on households including changes in employment status, adaptations to finance, sources of financial support, household food insecurity experience as well as access to, and uptake of, well-child clinics and vaccination health services were included.This folder includes the questionnaire for survey 3 in both English and Spanish languages.The corresponding dataset and dictionary of variables for survey 3 are available at 10.17028/rd.lboro.21741014

  9. a

    TEDS Express Demographic Questions Survey123 Connect Template

    • cotgis.hub.arcgis.com
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). TEDS Express Demographic Questions Survey123 Connect Template [Dataset]. https://cotgis.hub.arcgis.com/documents/cotgis::teds-express-demographic-questions-survey123-connect-template
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Includes questions pertaining to: race & ethnicitygenderageincomelocation

  10. f

    Sexual, romantic, and related orientations across all institutions, based on...

    • plos.figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A. M. Aramati Casper; Rebecca A. Atadero; Linda C. Fuselier (2023). Sexual, romantic, and related orientations across all institutions, based on the queered survey (n = 1932). [Dataset]. http://doi.org/10.1371/journal.pone.0264267.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    A. M. Aramati Casper; Rebecca A. Atadero; Linda C. Fuselier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sexual, romantic, and related orientations across all institutions, based on the queered survey (n = 1932).

  11. f

    Respondent demographic characteristics (n = 989).

    • figshare.com
    bin
    Updated Aug 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caleb Arthur; Kathleen Abenes; Marika Waselewski; Samantha A. Chuisano; Tammy Chang (2023). Respondent demographic characteristics (n = 989). [Dataset]. http://doi.org/10.1371/journal.pone.0290007.t001
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 11, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Caleb Arthur; Kathleen Abenes; Marika Waselewski; Samantha A. Chuisano; Tammy Chang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundSocial gatherings are frequent sources of COVID-19 infections, especially among youth. However, little is known about youth testing behaviors before and after gatherings. Our aim was to assess behaviors and perceptions of youth related to testing for COVID-19 before or after social gatherings in order to inform efforts to reduce disease spread.MethodsFive open-ended questions were texted to participants aged 14–24 throughout the United States via MyVoice. Using a content analysis approach, two investigators reviewed responses by question, developed a codebook, and independently applied codes. Discrepancies were resolved via discussion. Code frequency and demographic data were summarized using descriptive statistics.ResultsOf 1204 participants, 989 responded to at least one question (RR = 94.1%). The mean age was 20.2 years (SD: 2.4 years). Most participants (80.7%) reported testing for COVID-19 at least once. Most (70.6%) were likely to test following an event, especially “[i]f someone at the gathering tested positive,” while a smaller number (50.9%) endorsed testing prior to a gathering. Of youth who would not get tested, being vaccinated was the highest reported.ConclusionYouth in our nationwide sample are likely to test for COVID-19 after an event, though less likely if they are vaccinated. Their desire to test is primarily driven by symptoms, exposures, and requirements. Youth are interested in increased access to home testing. Youth-centered communications regarding testing recommendations and increased test availability for youth may reduce COVID-19 spread among young people and inform future pandemic recommendations.

  12. Demographic and Health Survey 1993-1994 - Bangladesh

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra & Associates/ NIPORT (2017). Demographic and Health Survey 1993-1994 - Bangladesh [Dataset]. https://catalog.ihsn.org/catalog/117
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    National Institute of Population Research and Traininghttp://niport.gov.bd/
    Authors
    Mitra & Associates/ NIPORT
    Time period covered
    1993 - 1994
    Area covered
    Bangladesh
    Description

    Abstract

    The Bangladesh Demographic and Health Survey (BDHS) is the first of this kind of study conducted in Bangladesh. It provides rapid feedback on key demographic and programmatic indicators to monitor the strength and weaknesses of the national family planning/MCH program. The wealth of information collected through the 1993-94 BDHS will be of immense value to the policymakers and program managers in order to strengthen future program policies and strategies.

    The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - asses the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.

    More specifically, the BDHS was designed to: - provide data on the family planning and fertility behavior of the Bangladesh population to evaluate the national family planning programs, - measure changes in fertility and contraceptive prevalence and, at the same time, study the factors which affect these changes, such as marriage patterns, urban/rural residence, availability of contraception, breastfeeding patterns, and other socioeconomic factors, and - examine the basic indicators of maternal and child health in Bangladesh.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 10-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    Bangladesh is divided into five administrative divisions, 64 districts (zillas), and 489 thanas. In rural areas, thanas are divided into unions and then mauzas, an administrative land unit. Urban areas are divided into wards and then mahallas. The 1993-94 BDHS employed a nationally-representative, two-stage sample. It was selected from the Integrated Multi-Purpose Master Sample (IMPS), newly created by the Bangladesh Bureau of Statistics. The IMPS is based on 1991 census data. Each of the five divisions was stratified into three groups: 1) statistical metropolitan areas (SMAs) 2) municipalities (other urban areas), and 3) rural areas. In rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 census frame, the units for the BDHS were sub-selected from the IMPS with equal probability to make the BDHS selection equivalent to selection with probability proportional to size. A total of 304 primary sampling units were selected for the BDHS (30 in SMAs, 40 in municipalities, and 234 in rural areas), out of the 372 in the IMPS. Fieldwork in three sample points was not possible, so a total of 301 points were covered in the survey.

    Since one objective of the BDHS is to provide separate survey estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal Division und for municipalities relative to the other divisions, SMAs, and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.

    After the selection of the BDHS sample points, field staffs were trained by Mitra and Associates and conducted a household listing operation in September and October 1993. A systematic sample of households was then selected from these lists, with an average "take" of 25 households in the urban clusters and 37 households in rural clusters. Every second household was identified as selected for the husband's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed the husband of any woman who was successfully interviewed. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 4,200 of their husbands.

    Note: See detailed in APPENDIX A of the survey final report.

    Sampling deviation

    Data collected for women 10-49, indicators calculated for women 15-49. A total of 304 primary sampling units were selected, but fieldwork in 3 sample points was not possible.

    Mode of data collection

    Face-to-face

    Research instrument

    Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Husbands' Questionnaire, and a Service Availability Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. Additions and modifications to the model questionnaires were made during a series of meetings with representatives of various organizations, including the Asia Foundation, the Bangladesh Bureau of Statistics, the Cambridge Consulting Corporation, the Family Planning Association of Bangladesh, GTZ, the International Centre for Diarrhoeal Disease Research (ICDDR,B), Pathfinder International, Population Communications Services, the Population Council, the Social Marketing Company, UNFPA, UNICEF, University Research Corporation/Bangladesh, and the World Bank. The questionnaires were developed in English and then translated into and printed in Bangla.

    The Household Questionnaire was used to list all the usual members and visitors of selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.

    The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age three, - Marriage, - Fertility preferences, and - Husband's background and respondent's work.

    The Husbands' Questionnaire was used to interview the husbands of a subsample of women who were interviewed. The questionnaire included many of the same questions as the Women's Questionnaire, except that it omitted the detailed birth history, as well as the sections on maternal care, breastfeeding and child health.

    The Service Availability Questionnaire was used to collect information on the family planning and health services available in and near the sampled areas. It consisted of a set of three questionnaires: one to collect data on characteristics of the community, one for interviewing family welfare visitors and one for interviewing family planning field workers, whether government or non-governent supported. One set of service availability questionnaires was to be completed in each cluster (sample point).

    Cleaning operations

    All questionnaires for the BDHS were returned to Dhaka for data processing at Mitra and Associates. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing inconsistencies found by the computer programs. One senior staff member, 1 data processing supervisor, questionnaire administrator, 2 office editors, and 5 data entry operators were responsible for the data processing operation. The data were processed on five microcomputers. The DHS data entry and editing programs were written in ISSA (Integrated System for Survey Analysis). Data processing commenced in early February and was completed by late April 1994.

    Response rate

    A total of 9,681 households were selected for the sample, of which 9,174 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant, or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 9,255 households that were occupied, 99 percent were successfully interviewed. In these households, 9,900 women were identified as eligible for the individual interview and interviews were completed for 9,640 or 97 percent of these. In one-half of the households that were selected for inclusion in the husbands' survey, 3,874 eligible husbands were identified, of which 3,284 or 85 percent were interviewed.

    The principal reason for non-response among eligible women and men was failure to find them at home despite repeated visits to the household. The refusal rate was very low (less than one-tenth of one percent among women and husbands). Since the main reason for interviewing husbands was to match the information with that from their wives, survey procedures called for interviewers not to interview husbands of women who were not interviewed. Such cases account for about one-third of the non-response among husbands. Where husbands and wives were both interviewed, they were interviewed simultaneously but separately.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey final report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions

  13. Gallup Poll Social Series (GPSS)

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  14. O

    Resident Survey 2024 Demographics

    • data.norfolk.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Sep 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ETC Institute (2024). Resident Survey 2024 Demographics [Dataset]. https://data.norfolk.gov/Government/Resident-Survey-2024-Demographics/ez9d-udp9
    Explore at:
    csv, application/rdfxml, xml, json, application/rssxml, tsvAvailable download formats
    Dataset updated
    Sep 24, 2024
    Dataset authored and provided by
    ETC Institute
    Description

    The City of Norfolk is committed to using data to inform decisions and allocate resources. An important source of data is input from residents about their priorities and satisfaction with the services we provide. Norfolk last conducted a citywide survey of residents in 2022.

    To provide up-to-date information regarding resident priorities and satisfaction, Norfolk contracted with ETC Institute to conduct a survey of residents. This survey was conducted in May and June 2024; surveys were sent via the U.S. Postal Service, and respondents were given the choice of responding by mail or online. This survey represents a random and statistically valid sample of residents from across the city, including each Ward. ETC Institute monitored responses and followed up to ensure all sections of the city were represented. Additionally, an opportunity was provided for residents not included in the random sample to take the survey and express their views. This dataset includes all random sample survey data including demographic information; it excludes free-form comments to protect privacy. It is grouped by Question Category, Question, Response, Demographic Question, and Demographic Question Response. This dataset will be updated every two years.

  15. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  16. i

    Population and Family Health Survey 2002 - Jordan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 2002 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/183
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    2002
    Area covered
    Jordan
    Description

    Abstract

    The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.

    The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.

    The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:

    1. Respondent’s background
    2. Birth history
    3. Knowledge and practice of family planning
    4. Maternal care, breastfeeding, immunization, and health of children under five years of age
    5. Marriage
    6. Fertility preferences
    7. Husband’s background and respondent’s employment
    8. Knowledge of AIDS and STIs

    In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.

    Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.

    Response rate

    A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed

  17. i

    Household Integrated Survey 2009 - Georgia

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The State Department for Statistics of Georgia (2019). Household Integrated Survey 2009 - Georgia [Dataset]. https://datacatalog.ihsn.org/catalog/5345
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    The State Department for Statistics of Georgia
    Time period covered
    2009
    Area covered
    Georgia
    Description

    Abstract

    The Household Integrated Survey (HIS) in Georgia is conducted regularly from 1996 and has served to assess the level of consumption-based poverty since then. The HIS represents quarterly panel data. The survey covers 13,404 households over the year. Each month 1/12 of the sample is refreshed (about 228 households are changed in 25 census units).

    Geographic coverage

    National coverage

    Universe

    The survey covered all household members excluding persons fully supported by the state, for example persons staying in homes for the elderly and the disabled, children in public care institutions, prisoners and etc.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Household Survey consists in quarterly interviewing households in Tbilisi and 9 Regions of Georgia: 1. Kakheti; 2. Tbilisi; 3. Shida Kartli, including Mtskheta-Mtianeti1; 4. Kvemo Kartli; 5. Mtskheta-Mtianeti; 6. Samtskhe-Javakheti; 7. Adjara; 8. Guria; 9. Samegrelo; 10. Imereti, including Racha-Lechkhumi and Kvemo Svaneti.

    The sampling frame of households covers non-institutional part of the population. Those households are subject of observation which live at the sampled addresses. The sample size was selected so that various parameters could be estimated with satisfactory statistical precision not only on the level of the whole country but also on the level of the above listed regions.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Household Integrated Survey questionnaire consists of 8 sections:

    • Shinda 01: General information about living conditions, housing, durables, etc. This section remained unchanged since the household survey was introduced in 1996.

    • Shinda 02: Household composition. This section also remained unchanged since the survey inception.

    • Shinda 03: Diary expenditure form. This section includes all diary expenditures during one week and it is filled out four times during the households' period of survey.

    • Shinda 04: Quarterly expenditures and agricultural activity form. This section covers quarterly expenditures on durables, energy supplies, health care, education, and other services. The questionnaire also collects information about harvest and processing of agricultural products produced by the household, sale and income from selling these products. The questionnaire is filled out four times, simultaneously with diary expenditures form. This section also features “reminder questions”, which help households remember their expenditures.

    • Shinda 05: Information about public and private transfers, as well as on changes in household financial and demographic conditions is collected in the section. The substance of the questions was not changed; however their phrasing was adjusted to make them more understandable for respondents.

    • Shinda 05-1: Includes information on employment and incomes from employment of adult household members.

    • Shinda 07: Refusal form. This section covers information on non-response or non-eligibility. This form helps correct the weights before data processing.

    • Shinda 09: Monitoring of Poverty in Georgia.

    NOTE: "Shinda" - Georgian abbreviation for "Observation of Households".

  18. i

    Demographic and Health Survey 2018 - Zambia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2021). Demographic and Health Survey 2018 - Zambia [Dataset]. https://catalog.ihsn.org/catalog/8845
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    Zambia Statistics Agency (ZamStats)
    Ministry of Health
    Time period covered
    2018 - 2019
    Area covered
    Zambia
    Description

    Abstract

    The primary objective of the 2018 ZDHS was to provide up-to-date estimates of basic demographic and health indicators. Specifically, the ZDHS collected information on: - Fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; and gender, nutrition, and awareness regarding HIV/AIDS and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) - Ownership and use of mosquito nets as part of the national malaria eradication programmes - Health-related matters such as breastfeeding, maternal and childcare (antenatal, delivery, and postnatal), children’s immunisations, and childhood diseases - Anaemia prevalence among women age 15-49 and children age 6-59 months - Nutritional status of children under age 5 (via weight and height measurements) - HIV prevalence among men age 15-59 and women age 15-49 and behavioural risk factors related to HIV - Assessment of situation regarding violence against women

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49, all men age 15-59, and all children age 0-5 years who are usual members of the selected households or who spent the night before the survey in the selected households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 ZDHS is the Census of Population and Housing (CPH) of the Republic of Zambia, conducted in 2010 by ZamStats. Zambia is divided into 10 provinces. Each province is subdivided into districts, each district into constituencies, and each constituency into wards. In addition to these administrative units, during the 2010 CPH each ward was divided into convenient areas called census supervisory areas (CSAs), and in turn each CSA was divided into enumeration areas (EAs). An enumeration area is a geographical area assigned to an enumerator for the purpose of conducting a census count; according to the Zambian census frame, each EA consists of an average of 110 households.

    The current version of the EA frame for the 2010 CPH was updated to accommodate some changes in districts and constituencies that occurred between 2010 and 2017. The list of EAs incorporates census information on households and population counts. Each EA has a cartographic map delineating its boundaries, with identification information and a measure of size, which is the number of residential households enumerated in the 2010 CPH. This list of EAs was used as the sampling frame for the 2018 ZDHS.

    The 2018 ZDHS followed a stratified two-stage sample design. The first stage involved selecting sample points (clusters) consisting of EAs. EAs were selected with a probability proportional to their size within each sampling stratum. A total of 545 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters. During the listing, an average of 133 households were found in each cluster, from which a fixed number of 25 households were selected through an equal probability systematic selection process, to obtain a total sample size of 13,625 households. Results from this sample are representative at the national, urban and rural, and provincial levels.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the 2018 ZDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s Model Questionnaires, were adapted to reflect the population and health issues relevant to Zambia. Input on questionnaire content was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international cooperating partners. After all questionnaires were finalised in English, they were translated into seven local languages: Bemba, Kaonde, Lozi, Lunda, Luvale, Nyanja, and Tonga. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    All electronic data files were transferred via a secure internet file streaming system to the ZamStats central office in Lusaka, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two IT specialists and one secondary editor who took part in the main fieldwork training; they were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July 2018 and completed in March 2019.

    Response rate

    Of the 13,595 households in the sample, 12,943 were occupied. Of these occupied households, 12,831 were successfully interviewed, yielding a response rate of 99%.

    In the interviewed households, 14,189 women age 15-49 were identified as eligible for individual interviews; 13,683 women were interviewed, yielding a response rate of 96% (the same rate achieved in the 2013-14 survey). A total of 13,251 men were eligible for individual interviews; 12,132 of these men were interviewed, producing a response rate of 92% (a 1 percentage point increase from the previous survey).

    Of the households successfully interviewed, 12,505 were interviewed in 2018 and 326 in 2019. As the large majority of households were interviewed in 2018 and the year for reference indicators is 2018.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Zambia Demographic and Health Survey (ZDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 ZDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 ZDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Completeness of information on siblings - Sibship size and sex ratio of siblings - Height and weight data completeness and quality for children - Number of enumeration areas completed by month, according to province, Zambia DHS 2018

    Note: Data quality tables are presented in APPENDIX C of the report.

  19. 2023 American Community Survey: DP02 | Selected Social Characteristics in...

    • data.census.gov
    • test.data.census.gov
    Updated Jan 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: DP02 | Selected Social Characteristics in the United States (ACS 5-Year Estimates Data Profiles) [Dataset]. https://data.census.gov/cedsci/table?q=20011+household+type
    Explore at:
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for German represents the number of people who listed German as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..Estimates of urban and rural populations, housing units...

  20. f

    Socio-demographic data of participants who completed the first follow-up...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Rodríguez-Molinero; César Gálvez-Barrón; Leire Narvaiza; Antonio Miñarro; Jorge Ruiz; Esther Valldosera; Natalia Gonzalo; Thalia Ng; María Jesús Sanguino; Antonio Yuste (2023). Socio-demographic data of participants who completed the first follow-up period. [Dataset]. http://doi.org/10.1371/journal.pone.0176703.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alejandro Rodríguez-Molinero; César Gálvez-Barrón; Leire Narvaiza; Antonio Miñarro; Jorge Ruiz; Esther Valldosera; Natalia Gonzalo; Thalia Ng; María Jesús Sanguino; Antonio Yuste
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Socio-demographic data of participants who completed the first follow-up period.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman (2022). Demographic data collection in STEM organizations [Dataset]. http://doi.org/10.25338/B8N63K

Demographic data collection in STEM organizations

Explore at:
zipAvailable download formats
Dataset updated
Mar 9, 2022
Dataset provided by
Harvard University
University of Montana
University of California, Davis
University of California, Berkeley
Chapman University
Authors
Nicholas Burnett; Alyssa Hernandez; Emily King; Richelle Tanner; Kathryn Wilsterman
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Description

Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)

Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)

Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.

Search
Clear search
Close search
Google apps
Main menu