Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Cumberland Gap by race. It includes the population of Cumberland Gap across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Cumberland Gap across relevant racial categories.
Key observations
The percent distribution of Cumberland Gap population by race (across all racial categories recognized by the U.S. Census Bureau): 88.48% are white, 3.03% are Black or African American, 2.42% are Asian and 6.06% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Cumberland Gap Population by Race & Ethnicity. You can refer the same here
The RAND Center for Population Health and Health Disparities (CPHHD) Data Core Series is composed of a wide selection of analytical measures, encompassing a variety of domains, all derived from a number of disparate data sources. The CPHHD Data Core's central focus is on geographic measures for census tracts, counties, and Metropolitan Statistical Areas (MSAs) from two distinct geo-reference points, 1990 and 2000. The current study, Disability, contains cross-sectional data from the year 2000. Based on the Decennial Census Special Table Series published by the Administration on Aging, this study contains a large number of disability measures categorized by age (55+), type of disability (sensory, learning, employment, and self-care), and poverty status.
This site is for us to upload the database is used for the analysis in the manuscript titled "Uneven Burdens: The Intersection of Brownfields, Pollution, and Socioeconomic Disparities in New Jersey, USA". The manuscript is has been published, and we here we provide the full version (in a shape file) of the database. We thank you for your patience. The link to the manuscript: https://www.mdpi.com/2071-1050/16/23/10535
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison between those included and those excluded in the analysis.
The table PM2.5 and Disparities is part of the dataset Air pollution exposure disparities across US population and income groups, available at https://redivis.com/datasets/4p1x-bpkfmrkvq. It contains 789260 rows across 21 variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Shade Gap, PA population pyramid, which represents the Shade Gap population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Shade Gap Population by Age. You can refer the same here
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Around 7.7% of Americans have asthma, including 20.2 million adults and 4.6 million children. This study examines asthma mortality trends and disparities across U.S. demographic and geographic groups from 1999 to 2020. A retrospective analysis was conducted using the CDC WONDER database to examine asthma-related deaths in the U.S. from 1999 to 2020. Age-adjusted mortality rates (AAMRs) and crude mortality rates (CMRs) per 100,000 were calculated. Trends and annual percent changes (APCs) were assessed overall and stratified by sex, race, region, and age. From 1999 to 2020, the U.S. recorded 221 161 asthma-related deaths (AAMR: 3.07), mostly in medical facilities. Mortality declined from 1999 to 2018 (APC: −1.53%) but surged from 2018 to 2020 (APC: 28.63%). Females, NH Blacks, and NH American Indians had the highest mortality rates. Older adults (≥65) had the greatest burden, with younger groups showing notable increases post-2018. Rural areas and the West reported slightly higher rates than urban and other regions. Hawaii and the District of Columbia had the highest AAMRs, while Florida and Nevada had the lowest. Asthma-related mortality in the U.S. declined until 2018 but sharply increased from 2018 to 2020, with rises across all demographic groups, regions, and settings. Females, NH Blacks, and older adults consistently had higher mortality rates, while younger age groups showed recent alarming increases. Targeted interventions are urgently needed to address inequities and recent mortality surges.
No ethnic/racial groups experienced better access to healthcare (across different access measures from health insurance to usual source of care) compared with non-Hispanic White or White people in 2017, 2018, or 2019. The exception is Asians, where they experienced better access than White population on 2 access measures (or 14 percent) but experienced worse access than White population on 4 measures (or 29 percent). The disparity was largest comparing Hispanic vs. non-Hispanic White population . This statistic depicts the percentage of healthcare access measures for which members of select ethnic groups had better or worse access to care than White population in the U.S. in 2017, 2018, or 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prevalence of pre-hypertension and hypertension by socioeconomic status (SES) quintile, 2011 Bangladesh Health and Demographic Survey
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The COVID-19 pandemic and subsequent expansion of telehealth may be exacerbating inequities in ambulatory care access due to institutional and structural barriers. We conduct a repeat cross-sectional analysis of ambulatory patients to evaluate for demographic disparities in the utilization of telehealth modalities. The ambulatory patient population at Oregon Health & Science University (Portland, OR) is examined from June 1 through September 30, in 2019 (reference period) and in 2020 (study period). We first assess for changes in demographic representation and then evaluate for disparities in the utilization of telephone and video care modalities using logistic regression. Between the 2019 and 2020 periods, patient video utilization increased from 0.2% to 31%, and telephone use increased from 2.5% to 25%. There was also a small but significant decline in the representation males, Asians, Medicaid, Medicare, and non-English speaking patients. Amongst telehealth users, adjusted odds of video participation were significantly lower for those who were Black, American Indian, male, prefer a non-English language, have Medicaid or Medicare, or older. A large portion of ambulatory patients shifted to telehealth modalities during the pandemic. Seniors, non-English speakers, and Black patients were more reliant on telephone than video for care. The differences in telehealth adoption by vulnerable populations demonstrate the tendency towards disparities that can occur in the expansion of telehealth and suggest structural biases. Organizations should actively monitor the utilization of telehealth modalities and develop best-practice guidelines in order to mitigate the exacerbation of inequities.
Methods A repeat cross-sectional study was conducted of patients who utilized the ambulatory clinics at Oregon Health & Science University (OHSU) from June 1 through September 30, in 2019 (reference period) and 2020 (study period). The study period was chosen because it exhibited a relatively stable rate of in-person, telephone, and video ambulatory visits. The initial months of the pandemic in March through May 2020 were marked by shifting state and institutional policies that affected appointment availability. By the summer of 2020, clinics were more open to scheduling in-person visits. We chose to investigate a later, more stable time-frame for disparities because we believe that the analysis would be more indicative of ongoing trends.
Unique patient counts were extracted from ambulatory provider-led visits, defined as outpatient visits with physicians, nurse practitioners, or physician assistants. Visits modalities included in-person, video, or telephone, the latter two comprising telehealth. Patient demographics included ethnicity, race, preferred language, payer, age, and sex. The encounter-level data was aggregated by unique patient identifier into patient counts for the study period of June 1 through Sept 30, 2020. Table 1 displays unique patient counts of ambulatory care modality utilization (in-person, video, telephone, and any telehealth) for each demographic group (race, ethnicity, sex, preferred language, insurance, and age). There is also a column for total patients in that demographic group. In the main article, we performed logistic regression to evaluate the association of patient demographics with telehealth utilization. Table 2 displays unique patient counts of ambulatory care modality utilization for each demographic group only within primary care clinics.
Table 3 displays unique patient counts for each demographic group within the time periods before and during the COVID-19 pandemic: June 1 through Sept 30, 2019 and June 1 through Sept 30, 2020. In the study, we compared the proportional representation of demographic groups between before and during the pandemic to assess for overall changes in our patient population.
Feature Articles on Population - Gender Imbalance in Hong Kong
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Traditional niche theory predicts that when species compete for one limiting resource in simple ecological settings the more fit competitor should exclude the less fit competitor. Since the advent of neutral theory ecologists have increasingly become interested both in how the magnitude of fitness inequality between competitors and stochasticity may affect this prediction. We used numerical simulations to investigate the outcome of two-species resource competition along gradients of fitness inequality (inequality in R*) and initial population size in the presence of demographic stochasticity. We found that the deterministic prediction of more fit competitors excluding less fit competitors was often unobserved when fitness inequalities were low or stochasticity was strong, and unexpected outcomes such as dominance by the less fit competitor, long-term co-persistence of both competitors or the extinction of both competitors could be common. By examining the interaction between fitness inequality and stochasticity our results mark the range of parameter space in which the predictions of niche theory break down most severely, and suggest that questions about whether competitive dynamics are driven by neutral or niche processes may be locally contingent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMR disaggregated by the five equity stratifiers, 2015 Angola demographic and health survey, Angola.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Presumed coverage of Psychosocial Care Centers (CAPSs) by state according to attendances for depression, Brazil, 2013 and 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Judith Gap, MT population pyramid, which represents the Judith Gap population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Judith Gap Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poisson regression of demographic effects on number of donations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data of participants in NCI clinical trials at the NIH Clinical Center, 2005-2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fatal police shootings in the United States continue to be a polarizing social and political issue. Clear disagreement between racial proportions of victims and nationwide racial demographics together with graphic video footage has created fertile ground for controversy. However, simple population level summary statistics fail to take into account fundamental local characteristics such as county-level racial demography, local arrest demography, and law enforcement density. Using data on fatal police shootings between January 2015 and July 2016, I implement a number of straightforward resampling procedures designed to carefully examine how unlikely the victim totals from each race are with respect to these local population characteristics if no racial bias were present in the decision to shoot by police. I present several approaches considering the shooting locations both as fixed and also as a random sample. In both cases, I find overwhelming evidence of a racial disparity in shooting victims with respect to local population demographics but substantially less disparity after accounting for local arrest demographics. I conclude the analyses by examining the effect of police-worn body cameras and find no evidence that the presence of such cameras impacts the racial distribution of victims. Supplementary materials for this article are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic and income disparities may impact food accessibility. Research has not yet well documented the precise location of healthy and unhealthy food resources around children’s homes and schools. The objective of this study was to examine the food environment around homes and schools for all public school children, stratified by race/ethnicity and poverty status. This cross-sectional study linked data on the exact home and school addresses of a population-based sample of public school children in New York City from 2013 to all corner stores, supermarkets, fast-food restaurants, and wait-service restaurants. Two measures were created around these addresses for all children: 1) distance to the nearest outlet, and 2) count of outlets within 0.25 miles. The total analytic sample included 789,520 K-12 graders. The average age was 11.78 years (SD ± 4.0 years). Black, Hispanic, and Asian students live and attend schools closer to nearly all food outlet types than White students, regardless of poverty status. Among not low-income students, Black, Hispanic, and Asian students were closer from home and school to corner stores and supermarkets, and had more supermarkets around school than White students. The context in which children live matters, and more nuanced data is important for development of appropriate solutions for childhood obesity. Future research should examine disparities in the food environment in other geographies and by other demographic characteristics, and then link these differences to health outcomes like body mass index. These findings can be used to better understand disparities in food access and to help design policies intended to promote healthy eating among children.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Cumberland Gap by race. It includes the population of Cumberland Gap across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Cumberland Gap across relevant racial categories.
Key observations
The percent distribution of Cumberland Gap population by race (across all racial categories recognized by the U.S. Census Bureau): 88.48% are white, 3.03% are Black or African American, 2.42% are Asian and 6.06% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Cumberland Gap Population by Race & Ethnicity. You can refer the same here