26 datasets found
  1. i

    Sahel Women Empowerment and Demographic Dividend Initiative, 2017 - Mali

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massa Coulibaly (2024). Sahel Women Empowerment and Demographic Dividend Initiative, 2017 - Mali [Dataset]. https://catalog.ihsn.org/catalog/12256
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset provided by
    Massa Coulibaly
    Olivia Bertelli
    Time period covered
    2017
    Area covered
    Mali
    Description

    Abstract

    The Sahel Women Empowerment and Demographic Dividend (P150080) project is a regional project aiming to accelerate the demographic transition by addressing both supply- and demand-side constraints to family planning and reproductive and sexual health. To achieve its objective, the project targets adolescent girls and young women mainly between the ages of 8 and 24, who are vulnerable to early marriage, teenage pregnancy, and early school drop-out. The project targeted 9 countries of the Sahel and Western Africa (Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Mauritania, and Niger) and is expanding in other African countries. The SWEDD is structured into three main components: component 1 seeks to generate demand for reproductive, maternal, neonatal, child health and nutrition products and services; component 2 seeks to improve supply of these products and qualified personnel; and component 3 seeks to strengthen national capacity and policy dialogue.

    The World Bank Africa Gender Innovation Lab and its partners are conducting rigorous impact evaluations of key interventions under component 1 to assess their effects on child marriage, fertility, and adolescent girls and young women’s empowerment. The interventions were a set of activities targeting adolescent girls and their communities, designed in collaboration with the government of Côte d’Ivoire. These were (i) safe spaces to empower girls through the provision of life skills and SRH education; (ii) support to income-generating activities (IGA) with the provision of grants and entrepreneurship training; (iii) husbands’ and future husbands’ clubs, providing boys of the community with life skills and SRH education; and finally (iv) community sensitization by religious and village leaders. The latter two have the objective to change restrictive social norms and create an enabling environment for girls’ empowerment.

    These data represent the first round of data collection (baseline) for the impact evaluation.

    Geographic coverage

    Mali, Regions of Kayes, Ségou and Sikasso

    Analysis unit

    Households, individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The baseline sample comprises 8776 households and 7463 girls living in the regions of Kayes, Sikasso and Ségou in Mali. To define the sample, we partnered with INSTAT Mali. At first, INSTAT conducted a census of the population living in the areas around the 49 schools selected by the education focal point that will all benefit from the SWEDD program. Therefore, census activities were concentrated in 287 villages located within a radius of 10/15km around these schools. Eventually, 10 villages had to be dropped due to security reasons. Keeping with the eligibility criteria of surveying villages where there were at least 10 households with a girl aged between 12 and 24 years old, 270 villages were eventually sampled. Households were surveyed before randomization into groups assigned to receive the SWEDD program.

    The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation

    The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to an eligible pre-selected girl within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The questionnaires were written in French, translated into Bambara, and programmed on tablets in French using the CAPI program.

  2. M

    Population Growth Rate 1961-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Population Growth Rate 1961-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/LTE/late-demographic-dividend/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - May 9, 2025
    Area covered
    late-demographic-dividend
    Description
    population growth rate for 2023 was 0.06%, a 0.03% decline from 2022.
    <ul style='margin-top:20px;'>
    
    <li> population growth rate for 2022 was <strong>0.09%</strong>, a <strong>0.12% decline</strong> from 2021.</li>
    <li> population growth rate for 2021 was <strong>0.21%</strong>, a <strong>0.13% decline</strong> from 2020.</li>
    <li> population growth rate for 2020 was <strong>0.34%</strong>, a <strong>0.12% decline</strong> from 2019.</li>
    </ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
    
  3. f

    Table 1_Aging and urban innovation: a human capital perspective.xlsx

    • figshare.com
    • frontiersin.figshare.com
    xlsx
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jinghang Cui; Rong Zhou; K. Jason Crandall; Mingxuan Cui; Ruirui Bai; Yi Jia (2025). Table 1_Aging and urban innovation: a human capital perspective.xlsx [Dataset]. http://doi.org/10.3389/fpubh.2024.1520834.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Frontiers
    Authors
    Jinghang Cui; Rong Zhou; K. Jason Crandall; Mingxuan Cui; Ruirui Bai; Yi Jia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundWith population aging, this demographic dividend diminishes, which may have implications for innovation in a region. Understanding the relationship between population aging and innovation is crucial for addressing economic challenges associated with an aging population.MethodsThis study utilized panel data on population aging and innovation from 252 cities between 2005 and 2014. Various estimation methods, including the fixed effects model, the generalized method of moments (GMM), and the mediation model, were used to analyze the data. These methods allowed for a comprehensive examination of the impact of population aging on innovation and the role of human capital in mediating this relationship.ResultsThe findings of the study indicate that both the 60-year-old and 65-year-old population significantly hinder innovation. The GMM suggests that innovation is “path dependent,” meaning that past levels of innovation do not alleviate the negative effects of population aging on future innovation. Additionally, the mediation model analysis demonstrates that human capital plays a crucial role in mediating the relationship between population aging and innovation, highlighting the importance of investing in human capital development.ConclusionThe findings of this research highlight the obstacles that population aging presents to fostering innovation. Overcoming these obstacles necessitates strategic investments in human capital and policies that support innovation. It is imperative for policymakers to implement recommendations that address population aging and encourage innovation in order to navigate the challenges posed by an aging population and promote a vibrant and dynamic economy.

  4. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  5. M

    Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/lte/late-demographic-dividend/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 29, 2025
    Area covered
    late-demographic-dividend
    Description
    Total current population for in 2023 was 2,326,833,223, a 0.06% increase from 2022.
    <ul style='margin-top:20px;'>
    
    <li>Total population for in 2022 was <strong>2,325,328,254</strong>, a <strong>0.09% increase</strong> from 2021.</li>
    <li>Total population for in 2021 was <strong>2,323,185,156</strong>, a <strong>0.21% increase</strong> from 2020.</li>
    <li>Total population for in 2020 was <strong>2,318,233,156</strong>, a <strong>0.34% increase</strong> from 2019.</li>
    </ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
    
  6. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    Florida International University
    University of Hawaiʻi at Mānoa
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  7. Fertility rate of the world and continents 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.statista.com/statistics/1034075/fertility-rate-world-continents-1950-2020/
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around five children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have five or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  8. 2010 American Community Survey: B19054 | INTEREST, DIVIDENDS, OR NET RENTAL...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2010 American Community Survey: B19054 | INTEREST, DIVIDENDS, OR NET RENTAL INCOME IN THE PAST 12 MONTHS FOR HOUSEHOLDS (ACS 5-Year Estimates Selected Population Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5YSPT2010.B19054?q=American+Trailer+Rentals+Inc
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2010
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2010, the 2010 Census provides the official counts of the population and housing units for the nation, states, counties, cities and towns. For 2006 to 2009, the Population Estimates Program provides intercensal estimates of the population for the nation, states, and counties..Explanation of Symbols:.An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2000 data. Boundaries for urban areas have not been updated since Census 2000. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2006-2010 American Community Survey (ACS) data generally reflect the December 2009 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2006-2010 American Community Survey

  9. M

    Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/PST/post-demographic-dividend/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 7, 2025
    Area covered
    post-demographic-dividend
    Description
    Total current population for in 2023 was 1,119,478,514, a 0.46% increase from 2022.
    <ul style='margin-top:20px;'>
    
    <li>Total population for in 2022 was <strong>1,114,354,147</strong>, a <strong>0.21% decline</strong> from 2021.</li>
    <li>Total population for in 2021 was <strong>1,116,651,310</strong>, a <strong>0.08% decline</strong> from 2020.</li>
    <li>Total population for in 2020 was <strong>1,117,530,670</strong>, a <strong>0.37% increase</strong> from 2019.</li>
    </ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
    
  10. Total population of the BRICS countries 2000-2030

    • statista.com
    • staff.ametzo.com
    • +1more
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.statista.com/statistics/254205/total-population-of-the-bric-countries/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  11. M

    Rural Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Rural Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/LTE/late-demographic-dividend/rural-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 7, 2025
    Area covered
    late-demographic-dividend
    Description
    rural population for 2023 was 781,621,448, a 2.13% decline from 2022.
    <ul style='margin-top:20px;'>
    
    <li> rural population for 2022 was <strong>798,659,547</strong>, a <strong>2.11% decline</strong> from 2021.</li>
    <li> rural population for 2021 was <strong>815,880,948</strong>, a <strong>1.98% decline</strong> from 2020.</li>
    <li> rural population for 2020 was <strong>832,367,428</strong>, a <strong>1.89% decline</strong> from 2019.</li>
    </ul>Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population. Aggregation of urban and rural population may not add up to total population because of different country coverages.
    
  12. f

    Prevalence and patterns of multi-morbidity among 30-69 years old population...

    • figshare.com
    xls
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohini; Panniyammakal Jeemon (2020). Prevalence and patterns of multi-morbidity among 30-69 years old population of rural Pathanamthitta, a district of Kerala, India: A cross-sectional study [Dataset]. http://doi.org/10.6084/m9.figshare.12494681.v4
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    figshare
    Authors
    Rohini; Panniyammakal Jeemon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pathanamthitta, Kerala
    Description

    Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.

    Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.

    Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.

    Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.

    Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern

  13. f

    Appendix B. Vital rate mean values for each population and transition.

    • figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jesús Villellas; William F. Morris; María B. García (2023). Appendix B. Vital rate mean values for each population and transition. [Dataset]. http://doi.org/10.6084/m9.figshare.3556734.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wiley
    Authors
    Jesús Villellas; William F. Morris; María B. García
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Vital rate mean values for each population and transition.

  14. M

    Rural Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Rural Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/pst/post-demographic-dividend/rural-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 29, 2025
    Area covered
    post-demographic-dividend
    Description
    rural population for 2023 was 197,978,207, a 0.71% decline from 2022.
    <ul style='margin-top:20px;'>
    
    <li> rural population for 2022 was <strong>199,397,035</strong>, a <strong>1.61% decline</strong> from 2021.</li>
    <li> rural population for 2021 was <strong>202,665,746</strong>, a <strong>1.11% decline</strong> from 2020.</li>
    <li> rural population for 2020 was <strong>204,934,945</strong>, a <strong>0.65% decline</strong> from 2019.</li>
    </ul>Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population. Aggregation of urban and rural population may not add up to total population because of different country coverages.
    
  15. M

    Urban Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Urban Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/PST/post-demographic-dividend/urban-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 9, 2025
    Area covered
    post-demographic-dividend
    Description
    urban population for 2023 was 921,500,307, a 0.72% increase from 2022.
    <ul style='margin-top:20px;'>
    
    <li> urban population for 2022 was <strong>914,957,112</strong>, a <strong>0.11% increase</strong> from 2021.</li>
    <li> urban population for 2021 was <strong>913,985,564</strong>, a <strong>0.15% increase</strong> from 2020.</li>
    <li> urban population for 2020 was <strong>912,595,725</strong>, a <strong>0.6% increase</strong> from 2019.</li>
    </ul>Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.
    
  16. T

    Philippines GDP per capita

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Philippines GDP per capita [Dataset]. https://tradingeconomics.com/philippines/gdp-per-capita
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    Philippines
    Description

    The Gross Domestic Product per capita in Philippines was last recorded at 3745.65 US dollars in 2023. The GDP per Capita in Philippines is equivalent to 30 percent of the world's average. This dataset provides - Philippines GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. w

    Life in Transition Survey 2006 - Albania, Armenia, Azerbaijan...and 25 more

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Synovate (2022). Life in Transition Survey 2006 - Albania, Armenia, Azerbaijan...and 25 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/584
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset authored and provided by
    Synovate
    Time period covered
    2006
    Area covered
    Azerbaijan, Armenia, Albania
    Description

    Abstract

    The transition from socialism to a market economy has transformed the lives of many people. What are people's perceptions and attitudes to transition? What are the current attitudes to market reforms and political institutions?

    To analyze these issues, the EBRD and the World Bank have jointly conducted the comprehensive, region-wide "Life in Transition Survey" (LiTS), which combines traditional household survey features with questions about respondents' attitudes and is carried out through two-stage sampling with a random selection of households and respondents.

    The LiTS assesses the impact of transition on people through their personal and professional experiences during the first 15 years of transition. LiTS attempts to understand how these personal experiences of transition relate to people’s attitudes toward market and political reforms, as well as their priorities for the future.

    The main objective of the LiTS was to build on existing studies to provide a comprehensive assessment of relationships among life satisfaction and living standards, poverty and inequality, trust in state institutions, satisfaction with public services, attitudes to a market economy and democracy and to provide valuable insights into how transition has affected the lives of people across a region comprising 16 countries in Central and Eastern Europe (“CEE”) and 11 in the Commonwealth of Independent State (“CIS”). Turkey and Mongolia were also included in the survey.

    Geographic coverage

    The LITS was to be implemented in the following 29 countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Poland, Romania, Russia, Serbia and Montenegro, Slovak Republic, Slovenia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A total of 1,000 face-to-face household interviews per country were to be conducted, with adult (18 years and over) occupants and with no upper limit for age. The sample was to be nationally representative. The EBRD’s preferred procedure was a two stage sampling method, with census enumeration areas (CEA) as primary sampling units and households as secondary sampling units. To the extent possible, the EBRD wished the sampling procedure to apply no more than 2 stages.

    The first stage of selection was to use as a sampling frame the list of CEA's generated by the most recent census. Ideally, 50 primary sampling units (PSU's) were to be selected from that sample frame, with probability proportional to size (PPS), using as a measure of size either the population, or the number of households.

    The second sampling stage was to select households within each of the primary sampling units, using as a sampling frame a specially developed list of all households in each of the selected PSU's defined above. Households to be interviewed were to be selected from that list by systematic, equal probability sampling. Twenty households were to be selected in each of the 50 PSU's.

    The individuals to be interviewed in each household were to be selected at random, within each of the selected households, with no substitution if possible.

    ESTABLISHMENT OF THE SAMPLE FRAME OF PSU’s

    In each country we established the most recent sample frame of PSU’s which would best serve the purposes of the LITS sampling methodology. Details of the PSU sample frames in each country are shown in table 1 (page 10) of the survey report.

    In the cases of Armenia, Azerbaijan, Kazakhstan, Serbia and Uzbekistan, CEA’s were used. In Croatia we also used CEA’s but in this case, because the CEA’s were very small and we would not have been able to complete the targeted number of interviews within each PSU, we merged together adjoining CEA’s and constructed a sample of 1,732 Merged Enumeration Areas. The same was the case in Montenegro.

    In Estonia, Hungary, Lithuania, Poland and the Slovak Republic we used Eurostat’s NUTS area classification system.

    [NOTE: The NUTS (from the French "Nomenclature des territoriales statistiques" or in English ("Nomenclature of territorial units for statistics"), is a uniform and consistent system that runs on five different NUTS levels and is widely used for EU surveys including the Eurobarometer (a comparable survey to the Life in Transition). As a hierarchical system, NUTS subdivides the territory of the country into a defined number of regions on NUTS 1 level (population 3-7 million), NUTS 2 level (800,000-3 million) and NUTS 3 level (150,000-800,000). At a more detailed level NUTS 3 is subdivided into smaller units (districts and municipalities). These are called "Local Administrative Units" (LAU). The LAU is further divided into upper LAU (LAU1 - formerly NUTS 4) and LAU 2 (formerly NUTS 5).]

    Albania, Bulgaria, the Czech Republic, Georgia, Moldova and Romania used the electoral register as the basis for the PSU sample frame. In the other cases, the PSU sample frame was chosen using either local geographical or administrative and territorial classification systems. The total number of PSU sample frames per country varied from 182 in the case of Mongolia to over 48,000 in the case of Turkey. To ensure the safety of our fieldworkers, we excluded from the sample frame PSU’s territories (in countries such as Georgia, Azerbaijan, Moldova, Russia, etc) in which there was conflict and political instability. We have also excluded areas which were not easily accessible due to their terrain or were sparsely populated.

    In the majority of cases, the source for this information was the national statistical body for the country in question, or the relevant central electoral committee. In establishing the sample frames and to the extent possible, we tried to maintain a uniform measure of size namely, the population aged 18 years and over which was of more pertinence to the LITS methodology. Where the PSU was based on CEA’s, the measure was usually the total population, whereas the electoral register provided data on the population aged 18 years old and above, the normal voting age in all sampled countries. Although the NUTS classification provided data on the total population, we filtered, where possible, the information and used as a measure of size the population aged 18 and above. The other classification systems used usually measure the total population of a country. However, in the case of Azerbaijan, which used CEA’s, and Slovenia, where a classification system based on administrative and territorial areas was employed, the measure of size was the number of households in each PSU.

    The accuracy of the PSU information was dependent, to a large extent, on how recently the data has been collected. Where the data were collected recently then the information could be considered as relatively accurate. However, in some countries we believed that more recent information was available, but because the relevant authorities were not prepared to share this with us citing secrecy reasons, we had no alternative than to use less up to date data. In some countries the age of the data available makes the figures less certain. An obvious case in point is Bosnia and Herzegovina, where the latest available figures date back to 1991, before the Balkan wars. The population figures available take no account of the casualties suffered among the civilian population, resulting displacement and subsequent migration of people.

    Equally there have been cases where countries have experienced economic migration in recent years, as in the case of those countries that acceded to the European Union in May, 2004, such as Hungary, Poland and the Baltic states, or to other countries within the region e.g. Armenians to Russia, Albanians to Greece and Italy; the available figures may not accurately reflect this. And, as most economic migrants tend to be men, the actual proportion of females in a population was, in many cases, higher than the available statistics would suggest. People migration in recent years has also occurred from rural to urban areas in Albania and the majority of the Asian Republics, as well as in Mongolia on a continuous basis but in this case, because of the nomadic population of the country.

    SAMPLING METHODOLOGY

    Brief Overview

    In broad terms the following sampling methodology was employed: · From the sample frame of PSU’s we selected 50 units · Within each selected PSU, we sampled 20 households, resulting in 1,000 interviews per country · Within each household we sampled 1 and sometimes 2 respondents The sampling procedures were designed to leave no free choice to the interviewers. Details on each of the above steps as well as country specific procedures adapted to suit the availability, depth and quality of the PSU information and local operational issues are described in the following sections.

    Selection of PSU’s

    The PSU’s of each country (all in electronic format) were sorted first into metropolitan, urban and rural areas (in that order), and within each of these categories by region/oblast/province in alphabetical order. This ensured a consistent sorting methodology across all countries and also that the randomness of the selection process could be supervised.

    To select the 50 PSU’s from the sample frame of PSU’s, we employed implicit stratification and sampling was done with PPS. Implicit stratification ensured that the sample of PSU’s was spread across the primary categories of explicit variables and a better representation of the population, without actually stratifying the PSU’s thus, avoiding difficulties in calculating the sampling errors at a later stage. In brief, the PPS involved the

  18. Population; key figures

    • cbs.nl
    • staging.dexes.eu
    • +2more
    xml
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2024). Population; key figures [Dataset]. https://www.cbs.nl/en-gb/figures/detail/85496ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1950 - 2024
    Area covered
    Netherlands
    Description

    Key figures on the population of the Netherlands.

    The following information is available: - Population by sex; - Population by marital status; - Population by age (groups); - Population by origin; - Private households; - Persons in institutional households; - Population growth; - Population density.

    CBS is in transition towards a new classification of the population by origin. Greater emphasis is now placed on where a person was born, aside from where that person’s parents were born. The term ‘migration background’ is no longer used in this regard. The main categories western/non-western are being replaced by categories based on continents and a few countries that share a specific migration history with the Netherlands. The new classification is being implemented gradually in tables and publications on population by origin.

    Data available from: 1950 Figures on population by origin are only available from 2022 at this moment. The periods 1996 through 2021 will be added to the table at a later time.

    Status of the figures: All the figures are final.

    Changes as of 17 July 2024: Final figures with regard to population growth for 2023 and final figures of the population on 1 January 2024 have been added.

    Changes as of 26 April 2023: None, this is a new table. This table succeeds the table Population; key figures; 1950-2022. See section 3. The following changes have been implemented compared to the discontinued table: - The topic folder 'Population by migration background' has been replaced by 'Population by origin'; - The underlying topic folders regarding 'first and second generation migration background' have been replaced by 'Born in the Netherlands' and 'Born abroad'; - The origin countries Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Turkey have been assigned to the continent of Asia (previously Europe).

    When will new figures be published? In the last quarter of 2025 final figures with regard to population growth for 2024 and final figures of the population on 1 January 2025 will be added.

  19. M

    Urban Population 1960-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Urban Population 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/pre/pre-demographic-dividend/urban-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - May 9, 2025
    Area covered
    pre-demographic-dividend
    Description
    urban population for 2023 was 470,493,927, a 3.99% increase from 2022.
    <ul style='margin-top:20px;'>
    
    <li> urban population for 2022 was <strong>452,453,175</strong>, a <strong>4% increase</strong> from 2021.</li>
    <li> urban population for 2021 was <strong>435,065,831</strong>, a <strong>4.06% increase</strong> from 2020.</li>
    <li> urban population for 2020 was <strong>418,085,743</strong>, a <strong>4.13% increase</strong> from 2019.</li>
    </ul>Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.
    
  20. Total fertility rate worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total fertility rate worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805064/fertility-rate-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Massa Coulibaly (2024). Sahel Women Empowerment and Demographic Dividend Initiative, 2017 - Mali [Dataset]. https://catalog.ihsn.org/catalog/12256

Sahel Women Empowerment and Demographic Dividend Initiative, 2017 - Mali

Explore at:
Dataset updated
Aug 28, 2024
Dataset provided by
Massa Coulibaly
Olivia Bertelli
Time period covered
2017
Area covered
Mali
Description

Abstract

The Sahel Women Empowerment and Demographic Dividend (P150080) project is a regional project aiming to accelerate the demographic transition by addressing both supply- and demand-side constraints to family planning and reproductive and sexual health. To achieve its objective, the project targets adolescent girls and young women mainly between the ages of 8 and 24, who are vulnerable to early marriage, teenage pregnancy, and early school drop-out. The project targeted 9 countries of the Sahel and Western Africa (Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Mauritania, and Niger) and is expanding in other African countries. The SWEDD is structured into three main components: component 1 seeks to generate demand for reproductive, maternal, neonatal, child health and nutrition products and services; component 2 seeks to improve supply of these products and qualified personnel; and component 3 seeks to strengthen national capacity and policy dialogue.

The World Bank Africa Gender Innovation Lab and its partners are conducting rigorous impact evaluations of key interventions under component 1 to assess their effects on child marriage, fertility, and adolescent girls and young women’s empowerment. The interventions were a set of activities targeting adolescent girls and their communities, designed in collaboration with the government of Côte d’Ivoire. These were (i) safe spaces to empower girls through the provision of life skills and SRH education; (ii) support to income-generating activities (IGA) with the provision of grants and entrepreneurship training; (iii) husbands’ and future husbands’ clubs, providing boys of the community with life skills and SRH education; and finally (iv) community sensitization by religious and village leaders. The latter two have the objective to change restrictive social norms and create an enabling environment for girls’ empowerment.

These data represent the first round of data collection (baseline) for the impact evaluation.

Geographic coverage

Mali, Regions of Kayes, Ségou and Sikasso

Analysis unit

Households, individuals

Kind of data

Sample survey data [ssd]

Sampling procedure

The baseline sample comprises 8776 households and 7463 girls living in the regions of Kayes, Sikasso and Ségou in Mali. To define the sample, we partnered with INSTAT Mali. At first, INSTAT conducted a census of the population living in the areas around the 49 schools selected by the education focal point that will all benefit from the SWEDD program. Therefore, census activities were concentrated in 287 villages located within a radius of 10/15km around these schools. Eventually, 10 villages had to be dropped due to security reasons. Keeping with the eligibility criteria of surveying villages where there were at least 10 households with a girl aged between 12 and 24 years old, 270 villages were eventually sampled. Households were surveyed before randomization into groups assigned to receive the SWEDD program.

The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.

Mode of data collection

Computer Assisted Personal Interview [capi]

Research instrument

The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation

The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to an eligible pre-selected girl within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The questionnaires were written in French, translated into Bambara, and programmed on tablets in French using the CAPI program.

Search
Clear search
Close search
Google apps
Main menu