Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample distribution by Demographic Factors (N = 384).
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
This is the exclusive data set associated with the research "Demographic factors influencing the sharing of fake news in Brazil: A multivariate and qualitative study".
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.
The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.
The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).
The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.
VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.
The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.
Sample survey data
The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.
Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.
In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.
Face-to-face
As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.
a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.
b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
- Respondent's background characteristics (education, residential history, etc.);
- Reproductive history;
- Contraceptive knowledge and use;
- Antenatal and delivery care;
- Infant feeding practices;
- Child immunization;
- Fertility preferences and attitudes about family planning;
- Husband's background characteristics;
- Women's work information; and
- Knowledge of AIDS.
c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.
The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.
The results of the household and individual
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examined the mediation effect of practical training on the relationship of demographic characteristics with bystander self-efficacy in cardiopulmonary resuscitation (CPR) performance. We used nationwide, cross-sectional data from the Korea Community Health Survey and analyzed 25,082 Korean adults who participated in CPR training within the last 2 years. A mediation model was applied to explore the pathway from demographic characteristics via CPR practical training to self-efficacy in CPR performance. A multiple logistic regression analysis was performed to examine each path in the mediation model. Of the 25,082 respondents recently trained, 19,168 (76.8%) practiced on a manikin. In the unadjusted CPR practical training model, the demographic characteristics associated with high self-efficacy in CPR performance were male gender (odds ratio [OR] = 2.54); 50s age group (OR = 1.30); college or more (OR = 1.39) and high school education (OR = 1.32); white collar (OR = 1.24) and soldier (OR = 2.98) occupational statuses. The characteristics associated with low self-efficacy were 30s age group (OR = 0.69) and capital (OR = 0.79) and metropolitan (OR = 0.84) areas of residence (p < 0.05). In the adjusted CPR practical training model, the significance of the relationship between demographics and self-efficacy in CPR performance decreased in male gender, 30s age group, college or more and high school education, and soldier occupational status (i.e., partial mediation), and disappeared in metropolitan residents (i.e., complete mediation). The degree of the mediating effect of CPR practical training on self-efficacy differed for each demographic characteristic. Thus, individualized educational strategies considering recipient demographics are needed for effective practice-based CPR training and improving bystander CPR performance.
The City of Rochester and its staff use data about individuals in our community to inform decisions related to policies and programs we design, fund, and carry out. City staff must understand and be accountable to best practices and standards to guide the appropriate use of this information in an ethical and accurate manner that furthers the public good. With these disaggregated data standards, the City seeks to establish useful, uniform standards that guide City staff in their collection, stewardship, analysis, and reporting of information about individuals and their demographic characteristics.This internal guide provides recommended standards and practices to City of Rochester staff for the collection, analysis, and reporting of data related to following characteristics of an individual: Race & Ethnicity; Nativity & Citizenship Status; Language Spoken at Home & English Proficiency; Age; Sex, Gender, & Sexual Orientation; Marital Status; Disability; Address / Geography; Household Income & Size; Housing Tenure; Computer & Internet Use; Employment Status; Veteran Status; and Education Level. This kind of data that describes the characteristics of individuals in our community is disaggregated data. When we summarize data about these individuals and report the data at the group level, it becomes aggregated data. These disaggregated data standards can help City staff in different roles understand how to ask individuals about various demographic traits that may describe them, the collection of which may be useful to inform the City’s programs and policies. Note that this standards document does not mandate the collection of every one of these demographic factors for all analyses or program data intake designs – instead, it prompts City staff to intentionally design surveys and other data intake tools/applications to collect the right level of data to inform the City’s decision-making while also respecting the privacy of the individuals whose information the City seeks to gather. When a City team does choose to collect any of the above-mentioned demographic information about individuals in our community, we advise that they adhere to these standards.
This product will include topics such as age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure. Some tables will be iterated by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.
https://www.icpsr.umich.edu/web/ICPSR/studies/38937/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38937/terms
The 2020 Census Demographic and Housing Characteristics Noisy Measurement File is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in DAS_2020_DHC_Production_Code/das_decennial/programs/engine/primitives.py at main uscensusbureau/DAS_2020_DHC_Production_Code (github.com) The 2020 Census Demographic and Housing Characteristics Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023] ), which added positive or negative integer-valued noise to each of the resulting counts. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data collected in the 2020 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the Census Demographic and Housing Characteristics Summary File. In addition to the noisy measurements, constraints based on invariant calculations --- counts computed without noise --- are also included (with the exception of the state-level total populations, which can be sourced separately from data.census.gov). The Noisy Measurement File was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The noisy measurements are produced in an early stage of the TDA. Afterward, these noisy measurements are post-processed to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these noisy measurements to enable data users to evaluate the impact of disclosure avoidance variability on 2020 Census data. The 2020 Census Demographic and Housing Characteristics (DHC) Noisy Measurement File has been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this metadata page and not through the standard ICPSR download. The link will take you to the Globus site where these data are housed. A README file is located in the Globus repository. Please refer to that for pertinent information. The Globus holding site requires users to create an account to access these data. Accounts can be created through existing institutional access and by personal access. Please see the Globus "How to get Started" page for more information.
The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.     The study...
This site is for us to upload the database is used for the analysis in the manuscript titled "Uneven Burdens: The Intersection of Brownfields, Pollution, and Socioeconomic Disparities in New Jersey, USA". The manuscript is has been published, and we here we provide the full version (in a shape file) of the database. We thank you for your patience. The link to the manuscript: https://www.mdpi.com/2071-1050/16/23/10535
This map service displays demographic data used in EJSCREEN. All demographic data were derived from American Community Survey 2006-2010 estimates. EJSCREEN is an environmental justice screening tool that provides EPA with a nationally consistent approach to screening for potential areas of EJ concern that may warrant further investigation. The EJ indexes are block group level results that combine multiple demographic factors with a single environmental variable (such as proximity to traffic) that can be used to help identify communities living with the greatest potential for negative environmental and health effects. The EJSCREEN tool is currently for internal EPA use only. It is anticipated that as users become accustomed to this new tool, individual programs within the Agency will develop program use guidelines and a community of practice will develop around them within the EPA Geoplatform. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas, such as Census block groups. Data on the full range of environmental impacts and demographic factors in any given location are almost certainly not available directly through this tool, and its initial results should be supplemented with additional information and local knowledge before making any judgments about potential areas of EJ concern.
Replication Data for: The political eects of socio-demographic factors in China: an exposition of the generalized ordered logistic model
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Births by Maternal Demographic Characteristics - 5-Year Aggregations reports the 5-year average number and percentage of births in certain categories by maternal demographic characteristics (mother's age, race, and ethnicity).
US Census American Community Survey (ACS) 2020, 5-year estimates of the key demographic characteristics of Public Use Microdata Areas (PUMA) geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2020 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).
This is an extract of the decennial Public Use Microdata Sample (PUMS) released by the Bureau of the Census. Because the complete PUMS files contain several hundred thousand records, ICPSR has constructed this subset to allow for easier and less costly analysis. The collection of data at ten year increments allows the user to follow various age cohorts through the life-cycle. Data include information on the household and its occupants such as size and value of dwelling, utility costs, number of people in the household, and their relationship to the respondent. More detailed information was collected on the respondent, the head of household, and the spouse, if present. Variables include education, marital status, occupation and income. The stratified sample has unequal sampling rates across strata and requires the use of weights for analyses using more than one stratum. The epsem sample was selected in a second stage from the stratified sample and used compensating sampling rates within each stratum so that the overall probability of selection for each person is equal. The person level weight for use with the stratified sample and the household weight to be used with the epsem sample are included in the data file.Conducted by the United States Department of Commerce, Bureau of the Census. Stratified sample of adults contained in the Public Use Microdata Sample. Approximately 500 records were drawn from each of 28 sex/age/race strata. Additionally, an equal probability (epsem) sample was drawn from the stratified sample. Datasets: DS0: Study-Level Files DS1: United States Microdata Samples Extract File, 1940-1980: Demographics of Aging DS2: Frequencies, 1940-1980 For 1960-1980, all PUMS records for persons 18 and over. For 1940 and 1950, all sample line records.
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Survey on Equipment and Use of Information and Communication Technologies in Households: Use of e-commerce for personal reasons or for the household in the last 12 months by demographic characteristics and type of product. National.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract 1990-2010. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.