The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample distribution by Demographic Factors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Currently, 2.7 billion people use at least one of the Facebook-owned social media platforms – Facebook, WhatsApp, and Instagram. Previous research investigating individual differences between users and non-users of these platforms has typically focused on one platform. However, individuals typically use a combination of Facebook-owned platforms. Therefore, we aim (1) to identify the relative prevalence of different patterns of social media use, and (2) to evaluate potential between-group differences in the distributions of age, gender, education, and Big Five personality traits. Data collection was performed using a cross-sectional design. Specifically, we administered a survey assessing participants’ demographic variables, current use of Facebook-owned platforms, and Big Five personality traits. In N = 3003 participants from the general population (60.67% females; mean age = 35.53 years, SD = 13.53), WhatsApp emerged as the most widely used application in the sample, and hence, has the strongest reach. A pattern consisting of a combined use of WhatsApp and Instagram appeared to be most prevalent among the youngest participants. Further, individuals using at least one social media platform were generally younger, more often female, and more extraverted than non-users. Small differences in Conscientiousness and Neuroticism also emerged across groups reporting different combinations of social media use. Interestingly, when examined as control variables, we found demographic characteristics partially accounted for differences in broad personality factors and facets across different patterns of social media use. Our findings are relevant to researchers carrying out their studies via social media platforms, as sample characteristics appear to be different depending on the platform used.
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
Summary File 1 Data Profile 1 (SF1 Table DP-1) for Census Tracts in the Minneapolis-St. Paul 7 County metropolitan area is a subset of the profile of general demographic characteristics for 2000 prepared by the U.S. Census Bureau.
This table (DP-1) includes: Sex and Age, Race, Race alone or in combination with one or more otehr races, Hispanic or Latino and Race, Relationship, Household by Type, Housing Occupancy, Housing Tenure
US Census 2000 Demographic Profiles: 100-percent and Sample Data
The profile includes four tables (DP-1 thru DP-4) that provide various demographic, social, economic, and housing characteristics for the United States, states, counties, minor civil divisions in selected states, places, metropolitan areas, American Indian and Alaska Native areas, Hawaiian home lands and congressional districts (106th Congress). It includes 100-percent and sample data from Census 2000. The DP-1 table is available as part of the Summary File 1 (SF 1) dataset, and the other three tables are available as part of the Summary File 3 (SF 3) dataset.
The US Census provides DP-1 thru DP-4 data at the Census tract level through their DataFinder search engine. However, since the Metropolitan Council and MetroGIS participants are interested in all Census tracts within the seven county metropolitan area, it was quicker to take the raw Census SF-1 and SF-3 data at tract levels and recreate the DP1-4 variables using the appropriate formula for each DP variable. This file lists the formulas used to create the DP variables.
https://www.icpsr.umich.edu/web/ICPSR/studies/36998/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36998/terms
The American Community Survey (ACS) is an ongoing statistical survey that samples a small percentage of the population every year -- giving communities the information they need to plan investments and services. The 5-year public use microdata sample (PUMS) for 2012-2016 is a subset of the 2012-2012 ACS sample. It contains the same sample as the combined PUMS 1-year files for 2012, 2013, 2014, 2015 and 2016. This data collection provides a person-level subset of 133,781 respondents whose occupations were coded as arts-related in the 2011-2015 ACS PUMS. The 2012-2016 PUMS is the seventh 5-year file published by the ACS. This data collection contains five years of data for the population from households and the group quarters (GQ) population. The GQ population and population from households are all weighted to agree with the ACS counts which are an average over the five year period (2012-2016). The ACS sample was selected from all counties across the nation. The ACS provides social, housing, and economic characteristics for demographic groups covering a broad spectrum of geographic areas in the United States. For a more detailed list of variables of what these categories include please see the decriptions of variables section.
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.
The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.
The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).
The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.
VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.
The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.
Sample survey data
The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.
Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.
In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.
Face-to-face
As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.
a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.
b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
- Respondent's background characteristics (education, residential history, etc.);
- Reproductive history;
- Contraceptive knowledge and use;
- Antenatal and delivery care;
- Infant feeding practices;
- Child immunization;
- Fertility preferences and attitudes about family planning;
- Husband's background characteristics;
- Women's work information; and
- Knowledge of AIDS.
c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.
The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.
The results of the household and individual
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socio-demographic characteristics of people with schizophrenia (n = 351).
Experimental Age, Sex, Race, and Ethnicity variables. Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. Please visit the following webpage for details. https://www.census.gov/programs-surveys/acs/data/experimental-data.htmlContact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2020. ACS Table(s): Demographic - Experimental. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: March 18, 2022. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.
Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status
The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.
Sample survey data [ssd]
The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.
In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.
The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.
The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.
All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.
Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.
Face-to-face [f2f]
Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.
The questionnaires were developed in Turkish and translated into English.
TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.
The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.
In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.
In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08251.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socio-demographic characteristics of the sample (N = 3745).
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
This data collection and its 1940 counterpart were assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology of the University of Wisconsin. The 1940 and 1950 Census Public Use Sample Project was supported by The National Science Foundation under Grant SES-7704135. The collections contain a stratified 1-percent sample of households, with separate records for each household, for each \'sample line\' respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 and 1950 Censuses of Population. The universe for the sample included all persons and households within the United States. Geographic identification of the location of the sampled households includes Census regions and divisions, States (except Alaska and Hawaii), Standard Metropolitan Areas (SMA\'s), and State Economic Areas (SEA\'s). The SMA\'s and SEA\'s are comparable for both the 1940 and 1950 Public Use Microdata Samples (PUMS). The data collections were constructed from and consist of 20 independently-drawn subsamples stored in 20 discrete physical files. Each of the 20 subsamples contains three record types (household, \'sample line\', and person). Both collections had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a \'sample line\' person were included in the public use microdata sample. The collections also contain records of group quarters members who were also on the Census \'sample line\'. For the 1940 and 1950 collections, each household record contains variables describing the location and composition of the household. The \'sample line\' records for 1950 contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records for 1950 contain such demographic variables as nativity, marital status, family membership, and occupation. Accompanying the data collections are code books which include an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. The data collections are arranged by subsample with each subsample stored as a separate physical file of information. The 20 subsamples were selected randomly. Within each of the 20 subsamples, records are sequenced by State. Extracting all of the records for one State entails reading through all of the 20 physical files and selecting that State\'s records from each of the 20 subsamples. Record types are ordered within household (household characteristics first, \'sample line\' next, and person records last). The 1950 collection consists of a total of 2,844,458 data records: 461,130 household records, 461,130 \'sample line\' records, and 1,922,198 person records. Each record type has a logical record length of 133.;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract 1990-2010. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 1-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 3, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Summary File 1 Data Profile 1 (SF1 Table DP-1) for cities and townships in Minnesota is a subset of the profile of general demographic characteristics for 2000 prepared by the U.S. Census Bureau.
This table includes: Sex and Age, Race, Race alone or in combination with one or more otehr races, Hispanic or Latino and Race, Relationship, Household by Type, Housing Occupancy, Housing Tenure
US Census 2000 Demographic Profiles: 100-percent and Sample Data
A profile includes four tables that provide various demographic, social, economic, and housing characteristics for the United States, states, counties, minor civil divisions in selected states, places, metropolitan areas, American Indian and Alaska Native areas, Hawaiian home lands and congressional districts (106th Congress). It includes 100-percent and sample data from Census 2000.
The Demographic Profile consists of four tables (DP-1 thru DP-4). For Census 2000 data, the DP-1 table is available as part of the Summary File 1 (SF 1) dataset, and the other three tables are available as part of the Summary File 3 (SF 3) dataset.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.