100+ datasets found
  1. Single and multiple residential property owners: Demographic data and value...

    • www150.statcan.gc.ca
    • datasets.ai
    • +1more
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Single and multiple residential property owners: Demographic data and value of properties owned, inactive [Dataset]. http://doi.org/10.25318/4610003801-eng
    Explore at:
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Data on resident owners who are persons occupying one of their residential properties: sex, age, total income, the type and the assessment value of the owner-occupied property, as well as the number and the total assessment value of residential properties owned.

  2. G

    Residential property buyers: Demographic data, first-time home buyer status,...

    • open.canada.ca
    • www150.statcan.gc.ca
    csv, html, xml
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Residential property buyers: Demographic data, first-time home buyer status, and price-to-income ratio, inactive [Dataset]. https://open.canada.ca/data/dataset/487292a4-4b27-4cbe-a78c-26c3661b5580
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).

  3. Demographics of nursing home residents in the U.S. 2020

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Demographics of nursing home residents in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1535819/demographics-of-nursing-home-residents-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    In 2020, nursing home residents in the United States were mostly *****, ************, ****** and over the age of ** years. The gender distribution was roughly six women to four men. Despite a ***** of residents being over 85 years, some ** percent were under the age of 65 years.

  4. Mountain Home, UT, US Demographics 2025

    • point2homes.com
    html
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Point2Homes (2025). Mountain Home, UT, US Demographics 2025 [Dataset]. https://www.point2homes.com/US/Neighborhood/UT/Mountain-Home-Demographics.html
    Explore at:
    htmlAvailable download formats
    Dataset updated
    2025
    Dataset authored and provided by
    Point2Homeshttps://plus.google.com/116333963642442482447/posts
    Time period covered
    2025
    Area covered
    Mountain Home, Utah, United States
    Variables measured
    Asian, Other, White, 2 units, Over 65, Median age, Blue collar, Mobile home, 3 or 4 units, 5 to 9 units, and 69 more
    Description

    Comprehensive demographic dataset for Mountain Home, UT, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.

  5. Distribution of population in the U.S. 2023, by type of housing

    • statista.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Distribution of population in the U.S. 2023, by type of housing [Dataset]. https://www.statista.com/statistics/1498066/distribution-of-population-us-by-type-of-housing/
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, most people in the United States lived in detached or attached single-family housing. Over ** percent of people lived in a single-family home that they owned, with a further ** percent living in a house that they were renting. Nevertheless, most of the people living in a rented housing unit lived in multi-family housing.

  6. Residential property owners by number of residential properties owned and...

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Residential property owners by number of residential properties owned and demographic characteristics [Dataset]. http://doi.org/10.25318/4610009601-eng
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of residents owners who are persons occupying one of their residential properties, as well as the assessment value of owned properties, total income, age, by type of occupied property, total number of residential properties, and sex.

  7. Population Estimates: Housing Unit Estimates for US, States, and Counties

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Housing Unit Estimates for US, States, and Counties [Dataset]. https://catalog.data.gov/dataset/population-estimates-housing-unit-estimates-for-us-states-and-counties
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    Annual Housing Unit Estimates for the United States, States, and Counties: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 housing units due to the Count Question Resolution program and geographic program revisions // Each year, the Census Bureau's Population and Housing Unit Estimates Program utilizes current data on new residential construction, placements of manufactured housing, and housing unit loss to calculate change in the housing stock since the most recent decennial census, and produces a time series of housing unit estimates. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  8. g

    Residential property owners by number of residential properties owned and...

    • gimi9.com
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Residential property owners by number of residential properties owned and demographic characteristics | gimi9.com [Dataset]. https://gimi9.com/dataset/ca_7ba7108e-ee87-41eb-8777-221d74159c0e/
    Explore at:
    Dataset updated
    Sep 25, 2025
    Description

    Number of residents owners who are persons occupying one of their residential properties, as well as the assessment value of owned properties, total income, age, by type of occupied property, total number of residential properties, and sex.

  9. North America Residential Construction Market Size By Building Type (...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2025). North America Residential Construction Market Size By Building Type ( Single-Family Homes, Multi-Family Homes, Luxury Housing), By Construction Type( New Construction, Renovation & Remodelling, Reconstruction & Rehabilitation), By Material Type(Concrete, Wood, Steel) ,By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/north-america-residential-construction-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    North America
    Description

    North America Residential Construction Market size was valued at USD 850 Billion in 2024 and is projected to reach USD 1300 Billion by 2032, growing at a CAGR of 6.5% from 2026 to 2032.North America Residential Construction Market DynamicsThe key market dynamics that are shaping the North America residential construction market include:Key Market Drivers:Housing Demand and Demographic Shifts: U.S. Census Bureau's comprehensive demographic analysis reports 17.3% increase in first-time homebuyers under 35. Millennials now account for 43% of mortgage applications, driving historic USD 1.5 trillion in housing market demand and profoundly changing residential real estate dynamics.Sustainable Building Technologies: In accordance to the thorough sustainability report published by the United States Green Building Council, green certifications are now used in 48% of new residential construction. Energy-efficient buildings consistently attract 7.1% higher market values, indicating a significant economic incentive for sustainable residential construction techniques.

  10. d

    United States residential historical data

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Axle (2023). United States residential historical data [Dataset]. http://doi.org/10.5683/SP3/N4ZP8P
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Data Axle
    Time period covered
    Jan 1, 2006 - Jan 1, 2022
    Description

    Product contains one data file (.csv format) for each year from 2006-2022. Records provide information about family demographics, dwelling characteristics, home value, income, years in residence & detailed geographic identifiers. Note: These data files are large (9-14GB each) and cannot be delivered through the Borealis platform. Please contact the Map and Data Library to arrange access: https://mdl.library.utoronto.ca/about/contact-form.

  11. North Carolina Population and Housing Statistics

    • kaggle.com
    zip
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). North Carolina Population and Housing Statistics [Dataset]. https://www.kaggle.com/datasets/thedevastator/north-carolina-population-and-housing-statistics
    Explore at:
    zip(723890417 bytes)Available download formats
    Dataset updated
    Dec 20, 2023
    Authors
    The Devastator
    Area covered
    North Carolina
    Description

    North Carolina Population and Housing Statistics

    Demographic and Housing Trends in North Carolina

    By Matthew Schnars [source]

    About this dataset

    This comprehensive dataset provides a well-detailed and robust statistical representation of various characteristics related to the population and housing conditions of North Carolina. The dataset originates from NC LINC (Log Into North Carolina), a critical data allocation platform that focuses on sharing information regarding diverse aspects of the state’s overall demographics, socio-economic conditions, education, and employment background.

    The dataset highlights a variety of facets such as population estimates by age group, race or ethnic group encompassing multiple demographic groups across different geographic areas within the state including counties and municipalities. Utilizing this expansive set of data could prove instrumental for researchers looking into demographic trends, market estimation studies or any other analysis requiring population certifications.

    Revolving around Housing Statistics in North Carolina, this dataset also gives a complete perspective about various ypes of residences available throughout the region. Availability types include both renter-occupied housing units along with owned homes, providing an encapsulating vision into the home ownership versus rental situation in North Carolina. In conjunction with providing insight into occupancy details for vacant homes.

    An intriguing section included within these datasets is congregated ethnicity-based data spread across numerous age-groups which can assist research based out on diverse cultures dwelling within this area.

    Overall, this dataset constitutes an essential resource for stakeholders interested in understanding demographic transformations over time or gaining insights into housing availability situations across different localities in North Carolina State to inform urban planning strategies and policies beneficially impacting residents’ lives directly

    How to use the dataset

    This dataset offers a broad range of demographic and housing data for North Carolina, making it an ideal resource for those interested in demographic trends, urban planning, social science research, real estate and economic studies. Here's how to get the most out of it:

    • Interpretation: Determine what each column represents in terms of demographic and housing attributes. Familiarize yourself with the unique characteristics that each column represents such as population size, race categories, gender distributions etc.

    • Comparison Studies: Analyze different locations within North Carolina by comparing figures across rows (geographic units). This can provide insight on socio-economic disparities or geographical preferences among residents.

    • Temporal Analysis: Although the dataset doesn't contain specific dates or timeframes directly related to these statistics, you can cross-reference with external datasets from different years to conduct temporal analysis procedures such as observing the growth rates in population or changes in housing statistics.

    • Joining Data: Combine this dataset with other relevant datasets like education levels or crime rates which may not be available here but could add multidimensional value when conducting thorough analyses.

    • Correlation Studies: Perform correlation studies between different columns e.g., is there a strong correlation between population density and number of occupied houses? Such insights may be valuable for multiple sectors including real estate investment or policy-making purposes.

    • Map Visualization: Use geographic tools to map data based on counties/townships providing visual perspectives over raw number comparisons which could potentially lead to more nuanced interpretations of demographic distributions across North Carolina

    • Predictive Modelling/Forecasting: Based on historic figures available through this database develop models which predict future trends within demographics & housing sector

    8: Presentation/Communication Tool: Whether you're delivering a presentation about social class disparities in NC regions or just curious about where populations are densest versus where there are more mobile homes vs homes owned freely -hamarize and display data in an easy-to-understand format.

    Before diving deep, always remember to clean the dataset by eliminating duplicates, filling NA values aptly, and verifying the authenticity of the data. Furthermore, always respect privacy & comply with data regulation policies while handling demographic databases

    Research Ideas

    • Urban Planning: This dataset can be a val...
  12. h

    Gen Z Racial Demographics

    • homebuyer.com
    json
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homebuyer.com (2025). Gen Z Racial Demographics [Dataset]. https://homebuyer.com/research/home-buyer-statistics
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    Homebuyer.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Variables measured
    Racial Demographics
    Description

    Distribution of Gen Z home buyers by race and ethnicity.

  13. h

    Late Millennial Racial Demographics

    • homebuyer.com
    json
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homebuyer.com (2025). Late Millennial Racial Demographics [Dataset]. https://homebuyer.com/research/home-buyer-statistics
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    Homebuyer.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Variables measured
    Racial Demographics
    Description

    Distribution of Late Millennial home buyers by race and ethnicity.

  14. N

    Mountain Home, ID Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Mountain Home, ID Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Mountain Home from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/mountain-home-id-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mountain Home
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Mountain Home population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Mountain Home across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Mountain Home was 16,703, a 1.22% increase year-by-year from 2022. Previously, in 2022, Mountain Home population was 16,501, an increase of 1.82% compared to a population of 16,206 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Mountain Home increased by 5,389. In this period, the peak population was 16,703 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Mountain Home is shown in this column.
    • Year on Year Change: This column displays the change in Mountain Home population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mountain Home Population by Year. You can refer the same here

  15. a

    Where do people own homes and what is the home value?

    • hub.arcgis.com
    • hub.scag.ca.gov
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where do people own homes and what is the home value? [Dataset]. https://hub.arcgis.com/maps/5342a27bc29f49e5b8622b0504cf4f9a
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This web map shows a comparison of owner occupied housing and the median home value for counties, tracts, and block groups in the US in 2018. Yellow areas have over 50% of households occupied by the home owner. A large symbol denotes a larger median home value. The popup is configured to show the following:% Owner occupied housingCount of owner occupied housesCount of renter occupied housesTotal householdsMedian home valueHousehold income by rangeThe source of the data is Esri's 2018 demographic estimates. For more information about Esri's demographic data, visit the Updated Demographics documentation.

  16. Median Home Price

    • open.piercecountywa.gov
    • internal.open.piercecountywa.gov
    Updated Jun 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington Center for Real Estate Research (2020). Median Home Price [Dataset]. https://open.piercecountywa.gov/Demographics/Median-Home-Price/cc6w-mz36
    Explore at:
    xlsx, kmz, application/geo+json, kml, xml, csvAvailable download formats
    Dataset updated
    Jun 23, 2020
    Dataset authored and provided by
    Washington Center for Real Estate Research
    Description

    This dataset uses data provided from Washington State’s Housing Market, a publication of the Washington Center for Real Estate Research (WCRER) at the University of Washington.

    Median sales prices represent that price at which half the sales in a county (or the state) took place at higher prices, and half at lower prices. Since WCRER does not receive sales data on individual transactions (only aggregated statistics), the median is determined by the proportion of sales in a given range of prices required to reach the midway point in the distribution. While average prices are not reported, they tend to be 15-20 percent above the median.

    Movements in sales prices should not be interpreted as appreciation rates. Prices are influenced by changes in cost and changes in the characteristics of homes actually sold. The table on prices by number of bedrooms provides a better measure of appreciation of types of homes than the overall median, but it is still subject to composition issues (such as square footage of home, quality of finishes and size of lot, among others).

    There is a degree of seasonal variation in reported selling prices. Prices tend to hit a seasonal peak in summer, then decline through the winter before turning upward again, but home sales prices are not seasonally adjusted. Users are encouraged to limit price comparisons to the same time period in previous years.

  17. Census of Population and Housing of the Kyrgyz Republic, 2009 - IPUMS Subset...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Committee of the Kyrgyz Republic (2025). Census of Population and Housing of the Kyrgyz Republic, 2009 - IPUMS Subset - Kyrgyzstan [Dataset]. https://microdata.worldbank.org/index.php/catalog/1632
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    National Statistical Committeehttps://www.stat.kg/
    IPUMS
    Time period covered
    2009
    Area covered
    Kyrgyzstan
    Description

    Analysis unit

    Persons, households, and dwellings

    UNITS IDENTIFIED: - Dwellings: yes - Vacant Units: no - Households: yes - Individuals: yes - Group quarters: yes

    UNIT DESCRIPTIONS: - Dwellings: The totality of all living quarters, regardless of ownership and employment at the time of the census, including residential buildings, special houses (like hostels, houses for lonely and old people, children's homes, boarding houses for disabled, school hostels and boarding school), flats, service housings, holiday homes, hotels, other living accomodations in other buildings suited for living whether or not they are intended for living. - Households: A group of people sharing the same housing unit (or one person living alone), jointly keeping the house, i.e. fully or partially pooling their individual budgets for common expenditures for food and daily living needs or having a common budget who may or may not be related by kinship. - Group quarters: Groups of people living at the same institution (housing unit), sharing meals, without having individual budgets or common consumer expenditures, subject to the same general rules, and usually unrelated by kinship.

    Universe

    The entire population of the country, including private and institutional households, their accommodation and living conditions Homeless people, temporarily absent persons, and temporary residents

    Kind of data

    Population and Housing Census [hh/popcen]

    Sampling procedure

    MICRODATA SOURCE: National Statistical Committee of the Kyrgyz Republic

    SAMPLE SIZE (person records): 564986.

    SAMPLE DESIGN: 20% sample drawn by the country: systematic sample of every 5th household or every 5th individual in collective household 10% sample drawn by IPUMS from the 20% sample: systematic sample of every 2nd household Homeless people, temporarily absent persons, and temporary residents

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three census forms: List of Residents (Form 1), Census Questionnaire - Population (Form 2), and Census Questionnaire - Housing Fund (Form 3)

  18. g

    Residential property buyers: Demographic data, first-time home buyer status,...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Residential property buyers: Demographic data, first-time home buyer status, and price-to-income ratio | gimi9.com [Dataset]. https://gimi9.com/dataset/ca_487292a4-4b27-4cbe-a78c-26c3661b5580
    Explore at:
    Description

    Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).

  19. a

    Single and multiple residential property owners - demographic data and value...

    • hamiltondatacatalog-mcmaster.hub.arcgis.com
    Updated Jun 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jadonvs_McMaster (2022). Single and multiple residential property owners - demographic data and value of properties owned by FEMALES (Semi-Detached House) Hamilton City [Dataset]. https://hamiltondatacatalog-mcmaster.hub.arcgis.com/datasets/43229a3651fd4bff9ce424f7a09ef70f
    Explore at:
    Dataset updated
    Jun 3, 2022
    Dataset authored and provided by
    jadonvs_McMaster
    Description

    Frequency: OccasionalTable: 46-10-0038-01Release date: 2022-04-12Geography: Province or territory, Census subdivision, Census metropolitan area, Census agglomeration, Census metropolitan area part, Census agglomeration partSymbol legend:.. / not available for a specific reference periodx / suppressed to meet the confidentiality requirements of the Statistics ActA / data quality: excellentThe footnotes in the table are represented in brackets.1) The universe of this table is restricted to individual resident owners who occupy a residential property. An owner's geographic location is determined by the location of the occupied property for both single- and multiple-property owners. A residential property refers to all land and structures intended for private occupancy whether on a permanent or a temporary basis.2) The geographic boundaries used in this table are the 2016 census subdivisions boundaries.3) Previous reference period estimates are subject to revision.4) The Composite Quality Indicator (CQI) shown in this table is created by combining many individual quality indicators, each one representing the quality of different Canadian Housing Statistics Program (CHSP) data processing steps (for example: coding, geocoding, linkage and imputation) and includes the following values: A - Excellent: All domain variables and the variable of interest are of excellent quality. B - Very good: All domain variables and the variable of interest are of very good to excellent quality. C - Good: The quality of some of the domain variables or the variable of interest is considered good while all the other variables are of very good to excellent quality. D - Acceptable: The quality of some of the domain variables or the variable of interest is considered acceptable while all the other variables are of good to excellent quality. E - Use with caution: Several domain variables or the variable of interest are of poor quality. F - Too unreliable to be published. The CQIs are available starting with the reference period of 2020, except for the Northwest Territories where they are available from 2019 reference period.5) Property type" refers to property characteristics and/or dwelling configuration on which there can be one or more residential structures. Property types include single-detached houses, on which there can be one or more residential structures. Property types include single-detached houses, condominium apartments, mobile homes, other property types, properties with multiple residential units, and vacant land."6) Estimates by property type in Newfoundland and Labrador are only available in the census subdivision of St. John’s.7) Estimates by property type in Northwest Territories are not available.8) Estimates by property type in Nunavut are not available.9) The number of properties owned by the property owner is limited to residential properties that are within a given province.10) Newfoundland and Labrador estimates are not available at the provincial level and for the category “Outside of census metropolitan areas (CMAs) and census agglomerations (CAs)”.11) Northwest Territories estimates are only available in the census agglomeration of Yellowknife.12) Counts undergo random rounding, a process that transforms all raw counts into randomly rounded counts. This reduces the possibility of identifying individuals in the tabulations. All percentages are derived from rounded counts, subtotals and totals may not exactly equal the sum of components due to system rounding.13) The number of property owners estimates are not available for the 2018 reference period.14) The number of owners should be used with caution outside of census metropolitan areas (CMAs) and census agglomerations (CAs), as well as the proportion of owners by geography. This note does not apply to Nunavut.15) Assessment value" refers to the assessed value of the property for the purposes of determining property taxes. It is important to note that the assessed value does not necessarily represent the market value. Given that different provinces and territories have their own assessment periods and duration of the valuation roll, it is difficult to make accurate comparisons of similar properties from one province or territory to another. For properties that are being utilized for both residential and non-residential purposes, only the residential portion's value has been taken into account. The reference years of the assessment values by province or territory are available here: Canadian Housing Statistics Program (CHSP)."16) For Nunavut, the property use indicator is not available, the universe of this table includes all individual resident owners. For owners with multiple properties, the geographic location and type of property are from the residential property with the highest assessment value.

  20. Commercial Real Estate Data | Global Real Estate Professionals | Work...

    • datarade.ai
    Updated Oct 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2021). Commercial Real Estate Data | Global Real Estate Professionals | Work Emails, Phone Numbers & Verified Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/commercial-real-estate-data-global-real-estate-professional-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 27, 2021
    Dataset provided by
    Area covered
    El Salvador, Comoros, Burkina Faso, Bolivia (Plurinational State of), Hong Kong, Netherlands, Marshall Islands, Guatemala, Sierra Leone, Korea (Republic of)
    Description

    Success.ai’s Commercial Real Estate Data and B2B Contact Data for Global Real Estate Professionals is a comprehensive dataset designed to connect businesses with industry leaders in real estate worldwide. With over 170M verified profiles, including work emails and direct phone numbers, this solution ensures precise outreach to agents, brokers, property developers, and key decision-makers in the real estate sector.

    Utilizing advanced AI-driven validation, our data is continuously updated to maintain 99% accuracy, offering actionable insights that empower targeted marketing, streamlined sales strategies, and efficient recruitment efforts. Whether you’re engaging with top real estate executives or sourcing local property experts, Success.ai provides reliable and compliant data tailored to your needs.

    Key Features of Success.ai’s Real Estate Professional Contact Data

    • Comprehensive Industry Coverage Gain direct access to verified profiles of real estate professionals across the globe, including:
    1. Real Estate Agents: Professionals facilitating property sales and purchases.
    2. Brokers: Key intermediaries managing transactions between buyers and sellers.
    3. Property Developers: Decision-makers shaping residential, commercial, and industrial projects.
    4. Real Estate Executives: Leaders overseeing multi-regional operations and business strategies.
    5. Architects & Consultants: Experts driving design and project feasibility.
    • Verified and Continuously Updated Data

    AI-Powered Validation: All profiles are verified using cutting-edge AI to ensure up-to-date accuracy. Real-Time Updates: Our database is refreshed continuously to reflect the most current information. Global Compliance: Fully aligned with GDPR, CCPA, and other regional regulations for ethical data use.

    • Customizable Data Delivery Tailor your data access to align with your operational goals:

    API Integration: Directly integrate data into your CRM or project management systems for seamless workflows. Custom Flat Files: Receive detailed datasets customized to your specifications, ready for immediate application.

    Why Choose Success.ai for Real Estate Contact Data?

    • Best Price Guarantee Enjoy competitive pricing that delivers exceptional value for verified, comprehensive contact data.

    • Precision Targeting for Real Estate Professionals Our dataset equips you to connect directly with real estate decision-makers, minimizing misdirected efforts and improving ROI.

    • Strategic Use Cases

      Lead Generation: Target qualified real estate agents and brokers to expand your network. Sales Outreach: Engage with property developers and executives to close high-value deals. Marketing Campaigns: Drive targeted campaigns tailored to real estate markets and demographics. Recruitment: Identify and attract top talent in real estate for your growing team. Market Research: Access firmographic and demographic data for in-depth industry analysis.

    • Data Highlights 170M+ Verified Professional Profiles 50M Work Emails 30M Company Profiles 700M Global Professional Profiles

    • Powerful APIs for Enhanced Functionality

      Enrichment API Ensure your contact database remains relevant and up-to-date with real-time enrichment. Ideal for businesses seeking to maintain competitive agility in dynamic markets.

    Lead Generation API Boost your lead generation with verified contact details for real estate professionals, supporting up to 860,000 API calls per day for robust scalability.

    • Use Cases for Real Estate Contact Data
    1. Targeted Outreach for New Projects Connect with property developers and brokers to pitch your services or collaborate on upcoming projects.

    2. Real Estate Marketing Campaigns Execute personalized marketing campaigns targeting agents and clients in residential, commercial, or industrial sectors.

    3. Enhanced Sales Strategies Shorten sales cycles by directly engaging with decision-makers and key stakeholders.

    4. Recruitment and Talent Acquisition Access profiles of highly skilled professionals to strengthen your real estate team.

    5. Market Analysis and Intelligence Leverage firmographic and demographic insights to identify trends and optimize business strategies.

    • What Makes Us Stand Out? >> Unmatched Data Accuracy: Our AI-driven validation ensures 99% accuracy for all contact details. >> Comprehensive Global Reach: Covering professionals across diverse real estate markets worldwide. >> Flexible Delivery Options: Access data in formats that seamlessly fit your existing systems. >> Ethical and Compliant Data Practices: Adherence to global standards for secure and responsible data use.

    Success.ai’s B2B Contact Data for Global Real Estate Professionals delivers the tools you need to connect with the right people at the right time, driving efficiency and success in your business operations. From agents and brokers to property developers and executiv...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of Canada, Statistics Canada (2024). Single and multiple residential property owners: Demographic data and value of properties owned, inactive [Dataset]. http://doi.org/10.25318/4610003801-eng
Organization logo

Single and multiple residential property owners: Demographic data and value of properties owned, inactive

4610003801

Explore at:
Dataset updated
Dec 9, 2024
Dataset provided by
Statistics Canadahttps://statcan.gc.ca/en
Area covered
Canada
Description

Data on resident owners who are persons occupying one of their residential properties: sex, age, total income, the type and the assessment value of the owner-occupied property, as well as the number and the total assessment value of residential properties owned.

Search
Clear search
Close search
Google apps
Main menu