93 datasets found
  1. Demographics of nursing home residents in the U.S. 2020

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Demographics of nursing home residents in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1535819/demographics-of-nursing-home-residents-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    In 2020, nursing home residents in the United States were mostly *****, ************, ****** and over the age of ** years. The gender distribution was roughly six women to four men. Despite a ***** of residents being over 85 years, some ** percent were under the age of 65 years.

  2. N

    Prairie Home, MO Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Prairie Home, MO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/prairie-home-mo-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Prairie Home
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Prairie Home by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Prairie Home. The dataset can be utilized to understand the population distribution of Prairie Home by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Prairie Home. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Prairie Home.

    Key observations

    Largest age group (population): Male # 65-69 years (17) | Female # 65-69 years (24). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Prairie Home population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Prairie Home is shown in the following column.
    • Population (Female): The female population in the Prairie Home is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Prairie Home for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Prairie Home Population by Gender. You can refer the same here

  3. N

    Sweet Home, OR Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Sweet Home, OR Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b256bfde-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sweet Home
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Sweet Home by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Sweet Home across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 51.21% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Sweet Home is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Sweet Home total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Sweet Home Population by Race & Ethnicity. You can refer the same here

  4. Smart home product ownership rates in the U.S. 2020, by gender

    • statista.com
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Smart home product ownership rates in the U.S. 2020, by gender [Dataset]. https://www.statista.com/statistics/756486/united-states-smart-home-survey-demographic-adoption-rates-by-gender/
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2020
    Area covered
    United States
    Description

    The ownership rates of several smart home products vary across the gender in the United States, with higher adoption rates found among women except for smart TV or smart TV plug-in products as of 2020. Most owned products for both genders were smart TVs or smart TV plug-ins, with male ownership at ** percent and female ownership at ** percent.

  5. TV home shopping user distribution in South Korea 2021, by age and gender

    • statista.com
    Updated May 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). TV home shopping user distribution in South Korea 2021, by age and gender [Dataset]. https://www.statista.com/statistics/1222373/south-korea-tv-home-shopping-user-by-age-and-gender/
    Explore at:
    Dataset updated
    May 13, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2020 - Mar 2021
    Area covered
    South Korea
    Description

    According to a survey on TV home shopping usage among South Korean consumers conducted from 2020 to 2021, approximately ** percent of respondents answered that they were women in their fifties. This reflects the general gender distribution among TV home shoppers, as women were the predominant share of users in every age bracket except for teens.

  6. d

    Factori USA People Data | socio-demographic, location, interest and intent...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA People Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our People data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    People Data Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    People Data Use Cases:

    360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori People Data you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of People Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_description
    company_sic...

  7. d

    Demographic Data Append (Age, Gender, Marital Status, etc) Append API, USA,...

    • datarade.ai
    .json, .csv
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Versium (2023). Demographic Data Append (Age, Gender, Marital Status, etc) Append API, USA, CCPA Compliant [Dataset]. https://datarade.ai/data-products/versium-reach-consumer-basic-demographic-age-gender-mari-versium
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Versium
    Area covered
    United States
    Description

    With Versium REACH Demographic Append you will have access to many different attributes for enriching your data.

    Basic, Household and Financial, Lifestyle and Interests, Political and Donor.

    Here is a list of what sorts of attributes are available for each output type listed above:

    Basic: - Senior in Household - Young Adult in Household - Small Office or Home Office - Online Purchasing Indicator
    - Language - Marital Status - Working Woman in Household - Single Parent - Online Education - Occupation - Gender - DOB (MM/YY) - Age Range - Religion - Ethnic Group - Presence of Children - Education Level - Number of Children

    Household, Financial and Auto: - Household Income - Dwelling Type - Credit Card Holder Bank - Upscale Card Holder - Estimated Net Worth - Length of Residence - Credit Rating - Home Own or Rent - Home Value - Home Year Built - Number of Credit Lines - Auto Year - Auto Make - Auto Model - Home Purchase Date - Refinance Date - Refinance Amount - Loan to Value - Refinance Loan Type - Home Purchase Price - Mortgage Purchase Amount - Mortgage Purchase Loan Type - Mortgage Purchase Date - 2nd Most Recent Mortgage Amount - 2nd Most Recent Mortgage Loan Type - 2nd Most Recent Mortgage Date - 2nd Most Recent Mortgage Interest Rate Type - Refinance Rate Type - Mortgage Purchase Interest Rate Type - Home Pool

    Lifestyle and Interests: - Mail Order Buyer - Pets - Magazines - Reading
    - Current Affairs and Politics
    - Dieting and Weight Loss - Travel - Music - Consumer Electronics - Arts
    - Antiques - Home Improvement - Gardening - Cooking - Exercise
    - Sports - Outdoors - Womens Apparel
    - Mens Apparel - Investing - Health and Beauty - Decorating and Furnishing

    Political and Donor: - Donor Environmental - Donor Animal Welfare - Donor Arts and Culture - Donor Childrens Causes - Donor Environmental or Wildlife - Donor Health - Donor International Aid - Donor Political - Donor Conservative Politics - Donor Liberal Politics - Donor Religious - Donor Veterans - Donor Unspecified - Donor Community - Party Affiliation

  8. North Carolina Population and Housing Statistics

    • kaggle.com
    zip
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). North Carolina Population and Housing Statistics [Dataset]. https://www.kaggle.com/datasets/thedevastator/north-carolina-population-and-housing-statistics
    Explore at:
    zip(723890417 bytes)Available download formats
    Dataset updated
    Dec 20, 2023
    Authors
    The Devastator
    Area covered
    North Carolina
    Description

    North Carolina Population and Housing Statistics

    Demographic and Housing Trends in North Carolina

    By Matthew Schnars [source]

    About this dataset

    This comprehensive dataset provides a well-detailed and robust statistical representation of various characteristics related to the population and housing conditions of North Carolina. The dataset originates from NC LINC (Log Into North Carolina), a critical data allocation platform that focuses on sharing information regarding diverse aspects of the state’s overall demographics, socio-economic conditions, education, and employment background.

    The dataset highlights a variety of facets such as population estimates by age group, race or ethnic group encompassing multiple demographic groups across different geographic areas within the state including counties and municipalities. Utilizing this expansive set of data could prove instrumental for researchers looking into demographic trends, market estimation studies or any other analysis requiring population certifications.

    Revolving around Housing Statistics in North Carolina, this dataset also gives a complete perspective about various ypes of residences available throughout the region. Availability types include both renter-occupied housing units along with owned homes, providing an encapsulating vision into the home ownership versus rental situation in North Carolina. In conjunction with providing insight into occupancy details for vacant homes.

    An intriguing section included within these datasets is congregated ethnicity-based data spread across numerous age-groups which can assist research based out on diverse cultures dwelling within this area.

    Overall, this dataset constitutes an essential resource for stakeholders interested in understanding demographic transformations over time or gaining insights into housing availability situations across different localities in North Carolina State to inform urban planning strategies and policies beneficially impacting residents’ lives directly

    How to use the dataset

    This dataset offers a broad range of demographic and housing data for North Carolina, making it an ideal resource for those interested in demographic trends, urban planning, social science research, real estate and economic studies. Here's how to get the most out of it:

    • Interpretation: Determine what each column represents in terms of demographic and housing attributes. Familiarize yourself with the unique characteristics that each column represents such as population size, race categories, gender distributions etc.

    • Comparison Studies: Analyze different locations within North Carolina by comparing figures across rows (geographic units). This can provide insight on socio-economic disparities or geographical preferences among residents.

    • Temporal Analysis: Although the dataset doesn't contain specific dates or timeframes directly related to these statistics, you can cross-reference with external datasets from different years to conduct temporal analysis procedures such as observing the growth rates in population or changes in housing statistics.

    • Joining Data: Combine this dataset with other relevant datasets like education levels or crime rates which may not be available here but could add multidimensional value when conducting thorough analyses.

    • Correlation Studies: Perform correlation studies between different columns e.g., is there a strong correlation between population density and number of occupied houses? Such insights may be valuable for multiple sectors including real estate investment or policy-making purposes.

    • Map Visualization: Use geographic tools to map data based on counties/townships providing visual perspectives over raw number comparisons which could potentially lead to more nuanced interpretations of demographic distributions across North Carolina

    • Predictive Modelling/Forecasting: Based on historic figures available through this database develop models which predict future trends within demographics & housing sector

    8: Presentation/Communication Tool: Whether you're delivering a presentation about social class disparities in NC regions or just curious about where populations are densest versus where there are more mobile homes vs homes owned freely -hamarize and display data in an easy-to-understand format.

    Before diving deep, always remember to clean the dataset by eliminating duplicates, filling NA values aptly, and verifying the authenticity of the data. Furthermore, always respect privacy & comply with data regulation policies while handling demographic databases

    Research Ideas

    • Urban Planning: This dataset can be a val...
  9. N

    New Home, TX Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Home, TX Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1f4768c-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, New Home
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of New Home by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for New Home. The dataset can be utilized to understand the population distribution of New Home by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in New Home. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for New Home.

    Key observations

    Largest age group (population): Male # 10-14 years (29) | Female # 40-44 years (28). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the New Home population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the New Home is shown in the following column.
    • Population (Female): The female population in the New Home is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in New Home for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Home Population by Gender. You can refer the same here

  10. Motor home camping population gender distribution in Japan 2023

    • statista.com
    Updated Jul 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Motor home camping population gender distribution in Japan 2023 [Dataset]. https://www.statista.com/statistics/1536318/japan-caravanning-population-gender-distribution/
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Japan
    Description

    In 2023, among people in Japan who participated in caravanning, **** percent were men and **** percent were women. This corresponds with findings that outdoor activities tend to attract more men than women. The survey estimated that there were approximately *** million people who participated in caravanning in that year.

  11. Facebook: Survey on Gender Equality at Home 2020 - World

    • catalog.ihsn.org
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Equal Measures 2030 (2021). Facebook: Survey on Gender Equality at Home 2020 - World [Dataset]. https://catalog.ihsn.org/catalog/9885
    Explore at:
    Dataset updated
    Nov 3, 2021
    Dataset provided by
    UN Womenhttp://unwomen.org/
    Facebookhttps://www.fb.com/
    World Bank
    Equal Measures 2030
    Ladysmith
    Time period covered
    2020
    Area covered
    World
    Description

    Abstract

    Facebook’s Survey on Gender Equality at Home generates a global snapshot of women and men’s access to resources, their time spent on unpaid care work, and their attitudes about equality. This survey covers topics about gender dynamics and norms, unpaid caregiving, and life during the COVID-19 pandemic. Aggregated data is available publicly on Humanitarian Data Exchange (HDX). De-identified microdata is also available to eligible nonprofits and universities through Facebook’s Data for Good (DFG) program. For more information, please email dataforgood@fb.com.

    Geographic coverage

    This survey is fielded once a year in over 200 countries and 60 languages. The data can help researchers track trends in gender equality and progress on the Sustainable Development Goals.

    Analysis unit

    • Public Aggregate Data on HDX: country or regional levels
    • De-identified Microdata through Facebook Data for Good program: Individual level

    Universe

    The survey was fielded to active Facebook users.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Respondents were sampled across seven regions: - East Asia and Pacific; Europe and Central Asia - Latin America and Caribbean - Middle East and North Africa - North America - Sub-Saharan Africa - South Asia

    For the purposes of this report, responses have been aggregated up to the regional level; these regional estimates form the basis of this report and its associated products (Regional Briefs). In order to ensure respondent confidentiality, these estimates are based on responses where a sufficient number of people responded to each question and thus where confidentiality can be assured. This results in a sample of 461,748 respondents.

    The sampling frame for this survey is the global database of Facebook users who were active on the platform at least once over the past 28 days, which offers a number of advantages: It allows for the design, implementation, and launch of a survey in a timely manner. Large sample sizes allow for more questions to be asked through random assignment of modules, avoiding respondent fatigue. Samples may be drawn from diverse segments of the online population. Knowledge of the overall sampling frame allowed for more rigorous probabilistic sampling techniques and non-response adjustments than is typical for online and phone surveys

    Mode of data collection

    Internet [int]

    Research instrument

    The survey includes a total of 75 questions, split across into the following sections: - Basic demographics and gender norms - Decision making and resource allocation across household members - Unpaid caregiving - Additional household demographics and COVID-19 impact - Optional questions for special groups (e.g. students, business owners, the employed, and the unemployed)

    Questions were developed collaboratively by a team of economists and gender experts from the World Bank, UN Women, Equal Measures 2030, and Ladysmith. Some of the questions have been borrowed from other surveys that employ alternative modes of administration (e.g., face-to-face, telephone surveys, etc.); this allows for comparability and identification of potential gaps and biases inherent to Facebook and other online survey platforms. As such, the survey also generates methodological insights that are useful to researchers undertaking alternative modes of data collection during the COVID-19 era.

    In order to avoid “survey fatigue,” wherein respondents begin to disengage from the survey content and responses become less reliable, each respondent was only asked to answer a subset of questions. Specifically, each respondent saw a maximum of 30 questions, comprising demographics (asked of all respondents) and a set of additional questions randomly and purposely allocated to them.

    Response rate

    Response rates to online surveys vary widely depending on a number of factors including survey length, region, strength of the relationship with invitees, incentive mechanisms, invite copy, interest of respondents in the topic and survey design.

    Sampling error estimates

    Any survey data is prone to several forms of error and biases that need to be considered to understand how closely the results reflect the intended population. In particular, the following components of the total survey error are noteworthy:

    Sampling error is a natural characteristic of every survey based on samples and reflects the uncertainty in any survey result that is attributable to the fact that not the whole population is surveyed.

    Other factors beyond sampling error that contribute to such potential differences are frame or coverage error and nonresponse error.

    Data appraisal

    Survey Limitations The survey only captures respondents who: (1) have access to the Internet (2) are Facebook users (3) opt to take this survey through the Facebook platform. Knowledge of the overall demographics of the online population in each region allows for calibration such that estimates are representative at this level. However, this means the results only tell us something about the online population in each region, not the overall population. As such, the survey cannot generate global estimates or meaningful comparisons across countries and regions, given the heterogeneity in internet connectivity across countries. Estimates have only been generated for respondents who gave their gender as male or female. The survey included an “other” option but very few respondents selected it, making it impossible to generate meaningful estimates for non-binary populations. It is important to note that the survey was not designed to paint a comprehensive picture of household dynamics but rather to shed light on respondents’ reported experiences and roles within households

  12. Nursing and residential care facilities, residents by gender and age by...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Nursing and residential care facilities, residents by gender and age by industry, annual [Dataset]. http://doi.org/10.25318/1310082901-eng
    Explore at:
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Totals and percentages of nursing and residential care facility residents by age group and gender, by 2017 NAICS (North American Industry Classification System), for Canada, provinces and territories, annual.

  13. d

    Factori US Home Ownership Mortgage Data | Property Data | Real-Estate Data -...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori US Home Ownership Mortgage Data | Property Data | Real-Estate Data - 340+ Million US Homeowners [Dataset]. https://datarade.ai/data-products/factori-us-home-ownerhship-mortgage-data-loan-type-mortgag-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our US Home Ownership Data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes various data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences. 1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc. 2. Demographics - Gender, Age Group, Marital Status, Language etc. 3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc 4. Persona - Consumer type, Communication preferences, Family type, etc 5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc. 6. Household - Number of Children, Number of Adults, IP Address, etc. 7. Behaviours - Brand Affinity, App Usage, Web Browsing etc. 8. Firmographics - Industry, Company, Occupation, Revenue, etc 9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc. 10. Auto - Car Make, Model, Type, Year, etc. 11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    Consumer Graph Use Cases: 360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation. Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity. Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

  14. Population working from home Spain 2020-2023 by gender

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population working from home Spain 2020-2023 by gender [Dataset]. https://www.statista.com/statistics/1200128/population-able-to-work-from-home-spain-by-work-schedule/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020 - 2023
    Area covered
    Spain
    Description

    The 2020 coronavirus outbreak changed many aspects of people's lives all around the world. One of the most noticeable one was the new employment arrangements by which many professionals had to work from home to stop the spread of COVID-19. As of 2023, approximately *** of the female professionals worked from home frequently.

  15. h

    Purchase Mortgage Distribution by Gender (2024)

    • homebuyer.com
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Consumer Financial Protection Bureau (2025). Purchase Mortgage Distribution by Gender (2024) [Dataset]. https://homebuyer.com/research/fair-lending-statistics
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    U.S. Consumer Financial Protection Bureau
    License

    https://www.usa.gov/government-copyrighthttps://www.usa.gov/government-copyright

    Time period covered
    2018 - 2024
    Area covered
    United States
    Variables measured
    Market Share Distribution
    Description

    Distribution of purchase mortgages by gender for U.S. home buyers in 2024, showing market share across different gender categories including Male, Female, Not Provided, Not Applicable, and Both

  16. e

    Population by Place of Residence (2011 Population Census)

    • data.europa.eu
    excel xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population by Place of Residence (2011 Population Census) [Dataset]. https://data.europa.eu/data/datasets/bbd1ea00-1526-407c-a0b4-0eb55d1023fc?locale=en
    Explore at:
    excel xlsx(1962496)Available download formats
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Collection of data from the 2011 Population Census related to the place of residence. The following tables are included in the collection: A. PROXIMITY1. POPULATION RECORDED BY DISTRICT, GENDER AND AGE, 2011A2. HOUSING, FOUNDATIONS AND POPULATION RECORDED BY DISTRICT AND GENDER, 2011A3. RESIDENCES, HOUSING, FOUNDATIONS AND POPULATION REGISTERED BY DISTRICT, 2011A4. POPULATION RECORDED BY DISTRICT, YEAR OF AGE AND GENDER, 2011A5. TOTAL POPULATION DEPENDENCY INDEX, BY DISTRICT AND URBAN/RURAL AREA, 2011A6. POPULATION RECORDED BY LANGUAGE, GENDER, DISTRICT AND URBAN/RURAL AREA, 2011 B. URBAN/RURAL AREAB1. POPULATION RECORDED BY DISTRICT, URBAN/RURAL AREA, GENDER AND AGE, 2011B2. HOUSING, FOUNDATIONS AND POPULATION REGISTERED BY DISTRICT, URBAN/RURAL AREA AND GENDER, 2011B3. RESIDENTIAL, HOUSING, FOUNDATIONS AND POPULATION RECORDED BY DISTRICT AND URBAN/RURAL AREA, 2011B4. POPULATION RECORDED, BY DISTRICT AND URBAN/RURAL AREA, GENDER AND MIDDLE AGE, 2011B5. Population registered in the housing, rural and urban/rural area, race and age, 2011B6a. Employees (15 years old and above) at level of formation, place of residence (urban/rural area) and economic activity, 2011 — total B6b. Employees (15 years old and above) at level of form, place of residence (urban/rural area) and economic activity, 2011 — man6c. Employees (15 years old and above) at level of form, place of residence (urban/rural area) and economic activity, 2011 — WomenB7a. Employees (15 years old and above) at level of form, place of residence (urban/rural area) and occupation, 2011 — total 7b. Employees (15 years old and above) at the level of formation, place of residence (urban/rural area) and professional, 2011 — Mansb7c. EMPLOYEES (15 YEARS OLD AND ABOVE) AT LEVEL OF FORMATION, PLACE OF RESIDENCE (URBAN/RURAL AREA) AND OCCUPATION, 2011 — WOMENB8. POPULATION DENSITY RECORDED BY AGE, DISTRICT AND URBAN/RURAL AREA, 2011 C. PUBLICATION/COMMUNITY/ENORY1. POPULATION RECORDED BY DISTRICT, CITY/COMMUNITY, PARISH, GENDER AND AGE, 2011C2. HOUSING, INSTITUTIONS AND POPULATION REGISTERED BY DISTRICT, CITY/COMMUNITY, PARISH AND GENDER, 2011C3. RESIDENCES, HOUSING, FOUNDATIONS AND POPULATION RECORDED BY DISTRICT, CITY/COMMUNITY AND QUARTERS, 2011C4. POPULATION RECORDED BY DISTRICT, CITY/COMMUNITY, PARISH, GENDER AND MIDDLE AGE, 2011C5. Population recorded by size of municipality/community, gender and provinity, 2011C6a. Financially active population, workers and unemployed (15 years old and above) by economic activity and place of residence (province, municipality/community) — total, 2011C6b. Financially active population, workers and unemployed (15 years old and above) by economic activity and place of residence (province, municipality/community) — men, 2011c6c. ECONOMICALLY ACTIVE POPULATION, WORKERS AND UNEMPLOYED (15 YEARS OLD AND ABOVE) BY ECONOMIC ACTIVITY AND PLACE OF RESIDENCE (PROVINCE, PUBLIC/COMMUNITY) — WOMEN, 2011C7. TOTAL POPULATION DEPENDENCY INDEX BY DISTRICT, CITY/COMMUNITY AND QUARTERS, 2011C8. POPULATION DENSITY RECORDED BY AGE, DISTRICT, CITY/COMMUNITY AND QUARTERS, 2011 D. POSTAL CODEX1. RESIDENTIAL, HOUSING AND POPULATION RECORDED BY POSTAL CODE, DISTRICT, AND CITY/COMMUNITY, 2011D2. HOUSES, HOUSING AND POPULATION RECORDED ACCORDING TO POSTAL CODE 2011D3. POPULATION RECORDED BY POSTAL CODE, DISTRICT, CITY/COMMUNITY, NATIONALITY AND GENDER, 2011D4. POPULATION RECORDED BY POSTAL CODE, NATIONALITY AND GENDER, 2011D5. POPULATION RECORDED BY POSTAL CODE AND AGE, 2011D6. POPULATION RECORDED BY POSTAL CODE, GENDER AND MIDDLE AGE, 2011D7. TOTAL POPULATION DEPENDENCY INDEX BY POSTAL CODE, 2011

  17. Frequency of visits or meetings in the last 12 months with relatives not...

    • ine.es
    csv, html, json +4
    Updated May 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2022). Frequency of visits or meetings in the last 12 months with relatives not residing in the home by gender and age group. Population aged 6 and over with a disability. [Dataset]. https://www.ine.es/jaxi/Tabla.htm?tpx=51889&L=1
    Explore at:
    json, csv, xls, txt, text/pc-axis, xlsx, htmlAvailable download formats
    Dataset updated
    May 5, 2022
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Variables measured
    Age, Sex, Frequency of family visits
    Description

    Disability, Independence and Dependency Situations Survey: Frequency of visits or meetings in the last 12 months with relatives not residing in the home by gender and age group. Population aged 6 and over with a disability. National.

  18. C

    People Receiving Homeless Response Services by Age, Race, Gender, Veteran...

    • data.ca.gov
    • catalog.data.gov
    csv, docx
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Interagency Council on Homelessness (2025). People Receiving Homeless Response Services by Age, Race, Gender, Veteran Status, and Disability Status [Dataset]. https://data.ca.gov/dataset/homelessness-demographics
    Explore at:
    csv(6756), csv(21402), docx(26383), csv(182753), csv(449722), csv(78821), csv(157106)Available download formats
    Dataset updated
    Nov 13, 2025
    Dataset authored and provided by
    California Interagency Council on Homelessness
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Yearly statewide and by-Continuum of Care total counts of individuals receiving homeless response services by age group, race, gender, veteran status, and disability status.

    This data comes from the Homelessness Data Integration System (HDIS), a statewide data warehouse which compiles and processes data from all 44 California Continuums of Care (CoC)—regional homelessness service coordination and planning bodies. Each CoC collects data about the people it serves through its programs, such as homelessness prevention services, street outreach services, permanent housing interventions and a range of other strategies aligned with California’s Housing First objectives.

    The dataset uploaded reflects the 2024 HUD Data Standard Changes. Previously, Race and Ethnicity were separate files but are now combined.

    Information updated as of 11/13/2025.

  19. Gender distribution of residents in assisted living communities in the U.S....

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender distribution of residents in assisted living communities in the U.S. 2022 [Dataset]. https://www.statista.com/statistics/1123910/gender-distribution-of-adults-in-assisted-living-communities-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, around ********** of assisted living residents in the United States were women. It is well-known that women outlive men, and therefore there are more women than men in the elderly population. Yet, the share of female assisted living residents is still higher than in the population, as females account for ** percent of the U.S. population ages 85 years and above.

  20. N

    Mountain Home, ID Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Mountain Home, ID Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1f37bcf-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mountain Home
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Mountain Home by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Mountain Home. The dataset can be utilized to understand the population distribution of Mountain Home by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Mountain Home. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Mountain Home.

    Key observations

    Largest age group (population): Male # 25-29 years (1,059) | Female # 25-29 years (762). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Mountain Home population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Mountain Home is shown in the following column.
    • Population (Female): The female population in the Mountain Home is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Mountain Home for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mountain Home Population by Gender. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Demographics of nursing home residents in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1535819/demographics-of-nursing-home-residents-us/
Organization logo

Demographics of nursing home residents in the U.S. 2020

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2020
Area covered
United States
Description

In 2020, nursing home residents in the United States were mostly *****, ************, ****** and over the age of ** years. The gender distribution was roughly six women to four men. Despite a ***** of residents being over 85 years, some ** percent were under the age of 65 years.

Search
Clear search
Close search
Google apps
Main menu