100+ datasets found
  1. g

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datastore.gapmaps.com
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS Data sourced from Applied Geographic Solutions includes over 40k Demographic variables across topics including estimates & projections on population, demographics, neighborhood segmentation, consumer spending, crime index & environmental risk available at census block level.

  2. f

    Demographic by Race 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Demographic by Race 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/b1651445db7a419794f1dc107968d885
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  3. a

    Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy

    • hub.arcgis.com
    • africageoportal.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy [Dataset]. https://hub.arcgis.com/maps/ffd1b8a7ffbf4b758fc15dcc0a6060c3
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    (by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/

  4. Demographics API - By Geography Type and Geography ID

    • datasets.ai
    • catalog.data.gov
    • +2more
    23
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Commerce (2024). Demographics API - By Geography Type and Geography ID [Dataset]. https://datasets.ai/datasets/demographics-api-by-geography-type-and-geography-id
    Explore at:
    23Available download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    Authors
    Department of Commerce
    Description

    This API returns a search for the demographic information for a particular geography type and geography ID

  5. NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED...

    • datalumos.org
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Education. Institute of Education Sciences. National Center for Education Statistics (2025). NCES Education Demographics and Geographic Estimates (EDGE) Open Data ACS-ED Geodata [Dataset]. http://doi.org/10.3886/E218863V1
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    United States Department of Educationhttp://ed.gov/
    Institute of Education Scienceshttp://ies.ed.gov/
    National Center for Education Statisticshttps://nces.ed.gov/
    Authors
    United States Department of Education. Institute of Education Sciences. National Center for Education Statistics
    License

    https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm

    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACS

  6. USA Demographics - Human Geography GeoInquiries 2020

    • geoinquiries-education.hub.arcgis.com
    • hub.arcgis.com
    Updated Aug 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2018). USA Demographics - Human Geography GeoInquiries 2020 [Dataset]. https://geoinquiries-education.hub.arcgis.com/maps/570fdb49796243bd8a05fc6e1df4c417
    Explore at:
    Dataset updated
    Aug 23, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    This map is for human geography classrooms and tied to the AP benchmarks. Learn more about GeoInquiries at www.esri.com/geoinquiries

  7. a

    Race & Ethnicity 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Race & Ethnicity 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b57e042f1c9e49c887d3bb048dd56daa
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  8. California Population Trends by Geography

    • data.cnra.ca.gov
    • data.ca.gov
    csv, website
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). California Population Trends by Geography [Dataset]. https://data.cnra.ca.gov/dataset/population-trends-by-geography
    Explore at:
    website, csv(317335)Available download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    California
    Description

    This dataset provides population estimate trends from 1998 to the current year for each of California’s 58 counties, further disaggregated by Detailed Analysis Units (DAUs) - the smallest geographic units historically used by the California Department of Water Resources for water planning as part of the California Water Plan. DAUs are subdivisions of Planning Areas and often align with county boundaries, although a single DAU may span multiple counties. They have traditionally supported water demand estimates based on crop and land use types.

    The population estimates were developed using U.S. Bureau Census 2000, 2010 and 2020 data. Throughout the estimation process, intermediate results were reviewed and adjusted as needed, with professional judgment applied to smooth trends where appropriate.

    Since the California Water Plan is retiring DAUs as its planning and analysis framework, future updates to this dataset will transition away from DAU based geography. Instead, population estimates will be provided based on other geographic units, such as the 8-digit Hydrologic Units (HUC8) defined by the U.S. Geological Survey’s Watershed Boundary Dataset.

    A dashboard is available for visualizing historical population trends by county and DAU.

  9. d

    Georeferenced Population Datasets of Mexico (GEO-MEX): Urban Place GIS...

    • catalog.data.gov
    • data.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Georeferenced Population Datasets of Mexico (GEO-MEX): Urban Place GIS Coverage of Mexico [Dataset]. https://catalog.data.gov/dataset/georeferenced-population-datasets-of-mexico-geo-mex-urban-place-gis-coverage-of-mexico
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    Mexico
    Description

    The Urban Place GIS Coverage of Mexico is a vector based point Geographic Information System (GIS) coverage of 696 urban places in Mexico. Each Urban Place is geographically referenced down to one tenth of a minute. The attribute data include time-series population and selected census/geographic data items for Mexican urban places from from 1921 to 1990. The cartographic data include urban place point locations on a state boundary file of Mexico. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI) and the Environmental Research Institute (ERI) of Michigan.

  10. f

    Demographic by Race 2022 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Demographic by Race 2022 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/449b09ed0cd046078e8a3e7d7327b1bb
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  11. a

    Demographic by Race 2023 (all geographies, statewide)

    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic by Race 2023 (all geographies, statewide) [Dataset]. https://fultoncountyopendata-fulcogis.opendata.arcgis.com/maps/5d3ef7696cf1440faad2d512c3d10297
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  12. d

    Spatiotemporal historical datasets on micro-level for geocoded individuals...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hedefalk, Finn; Patrick Svensson; Lars Harrie (2023). Spatiotemporal historical datasets on micro-level for geocoded individuals in five Swedish parishes, 1813-1914 [Dataset]. http://doi.org/10.7910/DVN/Z0AHAL
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hedefalk, Finn; Patrick Svensson; Lars Harrie
    Time period covered
    Jan 1, 1800 - Jan 1, 1914
    Description

    The datasets presented here enable historical longitudinal studies of micro-level geographic factors in a rural setting. These types of datasets are new, as historical demography studies have generally failed to properly include the micro-level geographic factors. Our datasets describe the geography over five Swedish rural parishes and a geocoded population (at the property unit level) for this area for the time period 1813-1914. The population is a subset of the Scanian Economic Demographic Database (SEDD). The geographic information includes the following feature types: property units, wetlands, buildings, roads and railroads. The property units and wetlands are stored in object-lifeline time representations (information about creation, changes and ends of objects are recorded in time), whereas the other feature types are stored as snapshots in time. Thus, the datasets present one of the first opportunities to study historical spatio-temporal patterns at the micro-level.

  13. 04 - USA demographics - Esri GeoInquiries collection for Human Geography

    • library.ncge.org
    • geoinquiries-education.hub.arcgis.com
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 04 - USA demographics - Esri GeoInquiries collection for Human Geography [Dataset]. https://library.ncge.org/documents/NCGE::04-usa-demographics-esri-geoinquiries-collection-for-human-geography/about
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Area covered
    United States
    Description

    Students will explore U.S. census data to see the spatial differences in the United States’ population. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes:· Unit 2, A1: Geographical analysis of population (density, distribute and scale)· Unit 2, A3: Geographical analysis of population (composition: age, sex, income, education and ethnicity)· Unit 2, A4: Geographical analysis of population (patterns of fertility, mortality and health)Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  14. D

    SFDPH reporting - geography population estimates

    • data.sfgov.org
    application/rdfxml +5
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    American Community Survey (2025). SFDPH reporting - geography population estimates [Dataset]. https://data.sfgov.org/Economy-and-Community/SFDPH-reporting-geography-population-estimates/35v5-seg9
    Explore at:
    csv, application/rdfxml, json, xml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    American Community Survey
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This filtered view contains the population estimates for San Francisco geographic units from the U.S. Census Bureau’s American Community Survey that are used in the Department of Public Health’s public reporting. Details on the underlying geographic unit data from the American Community Survey are available below. The geographies included are census tracts, analysis neighborhoods, and zip codes (ZCTA). We are using 2016-2020 ACS estimates in our public reporting, but additional years are included in this view as well for historical purposes.

    The COVID-19 reports which use this data are available on SF.gov by clicking here.

    San Francisco Population and Demographic Census data dataset filtered on:

    • "geography" =
      • 'neighborhood'
      • OR 'tract'
      • OR 'zcta'
    • AND "demographic_category" = 'all'
    A. SUMMARY This dataset contains population and demographic estimates and associated margins of error obtained and derived from the US Census. The data is presented over multiple years and geographies. The data is sourced primarily from the American Community Survey.

    B. HOW THE DATASET IS CREATED The raw data is obtained from the census API. Some estimates as published as-is and some are derived.

    C. UPDATE PROCESS New estimates and years of data are appended to this dataset. To request additional census data for San Francisco, email support@datasf.org

    D. HOW TO USE THIS DATASET The dataset is long and contains multiple estimates, years and geographies. To use this dataset, you can filter by the overall segment which contains information about the source, years, geography, demographic category and reporting segment. For census data used in specific reports, you can filter to the reporting segment. To use a subset of the data, you can create a filtered view. More information of how to filter data and create a view can be found here

  15. a

    ACS2023 Demographic Population AAA

    • hub.arcgis.com
    • arc-garc.opendata.arcgis.com
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). ACS2023 Demographic Population AAA [Dataset]. https://hub.arcgis.com/datasets/GARC::population-2023-all-geographies-statewide?layer=0
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  16. ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05)

    • catalog.data.gov
    • data-nces.opendata.arcgis.com
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-demographic-characteristics-dp05-7a484
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  17. a

    Demographic x Race & Ethnicity 2020 (DHC, all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Mar 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Demographic x Race & Ethnicity 2020 (DHC, all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b86a0d55c5a647e380d54265972265b8
    Explore at:
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the DHC 2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find geography definitions and user notes below.These are indicators built from the 2020 Decennial CensusThis is the second release based on the 2020 Census following the Redistricting Data release previously. The DHC release lets us drill deeper on age than the redistricting data (that only breaks at 0-17 and 18+). Additionally, we get some data on household type and housing tenure.Geographies AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage) ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit) ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit) BeltLineStatistical (buffer) BeltLineStatisticalSub (subareas) Census Tract (statewide) CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit) City (statewide) City of Atlanta Council Districts (City of Atlanta) City of Atlanta Neighborhood Planning Unit (City of Atlanta) City of Atlanta Neighborhood Statistical Areas (City of Atlanta) County (statewide) Georgia House (statewide) Georgia Senate (statewide) HSSA = High School Statistical Area (11 county region) MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit) Regional Commissions (statewide) State of Georgia (single geographic unit) Superdistrict (ARC region) US Congress (statewide) UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit) ZIP Code Tabulation Areas (statewide) Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2020Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/GARC::data-manifest-for-arc-census-demographic-and-housing-characteristics-dhc-2020-release/aboutFor more information, visit the US Census DHC Technical Documentation webpage.

  18. a

    Population Density in the US 2020 Census

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2024). Population Density in the US 2020 Census [Dataset]. https://hub.arcgis.com/maps/58e4ee07a0e24e28949903511506a8e4
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  19. d

    Statistics Korea_SGIS Open Platform_Demographics

    • data.go.kr
    json
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Statistics Korea_SGIS Open Platform_Demographics [Dataset]. https://www.data.go.kr/en/data/15088190/openapi.do
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 20, 2024
    License

    https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do

    Description

    Demographic data reconstructed from the Population and Housing Census of the National Statistical Office for population-related statistics according to conditions to fit the SGIS open platform

  20. l

    2023 Population and Poverty by Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +1more
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2023 Population and Poverty by Split Tract [Dataset]. https://geohub.lacity.org/maps/lacounty::2023-population-and-poverty-by-split-tract
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps

GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data

Explore at:
Dataset updated
Aug 14, 2024
Dataset authored and provided by
GapMaps
Area covered
Canada, United States
Description

GapMaps GIS Data sourced from Applied Geographic Solutions includes over 40k Demographic variables across topics including estimates & projections on population, demographics, neighborhood segmentation, consumer spending, crime index & environmental risk available at census block level.

Search
Clear search
Close search
Google apps
Main menu