Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
The table HI- Demographic Data is part of the dataset Demographic Data, available at https://redivis.com/datasets/fh74-90v3ge9m2. It contains 767560 rows across 699 variables.
The table FL- Demographic Data is part of the dataset Demographic Data, available at https://redivis.com/datasets/fh74-90v3ge9m2. It contains 14609762 rows across 699 variables.
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
The table MN- Demographic Data is part of the dataset Demographic Data, available at https://redivis.com/datasets/fh74-90v3ge9m2. It contains 3514445 rows across 699 variables.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2023-05-11.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY23-0262)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female. . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority. Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran. Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown by the following legal form of organization (LFO) categories:. S-Corporations. C-Corporations. Individual proprietorships. Partnerships...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. For C-corporations, there is no tax form or business registry that clearly and unequivocally identifies all owners of this type of business. For this reason, the Census Bureau is unable to assign demographic characteristics for C-corporations. Data for C-corporations are included in the published tables but are not shown by the demographic characteristics of the firms....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas...Data are also shown for the 3-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2019/AB1900NESD03.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2019/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the level of noise applied to the data:. G - Low noise: The cell valu...
These data were compiled to determine whether transient population dynamics substantially alter population growth rates of sagebrush after disturbance, impede resilience and restoration, and in turn drive ecosystem transformation. Data were collected from 2014-2016 on sagebrush population height distributions at 531 sites across the Great Basin that had burned and were subsequently reseeded by the BLM. These data include field data on sagebrush density in 6 size classes and site attributes (seeding year, sampling year, random site designation, elevation, seeding rate). Also included are modeled spring soil moisture data at each site from the year of seeding to sampling. This data release includes associated software code allows the inference of demographic rates (survival, reproduction, and individual growth) of sagebrush using Hamiltonian Monte Carlo approaches in Stan (https://mc-stan.org/).
Premium B2C Consumer Database - 269+ Million US Records
Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.
Core Database Statistics
Consumer Records: Over 269 million
Email Addresses: Over 160 million (verified and deliverable)
Phone Numbers: Over 76 million (mobile and landline)
Mailing Addresses: Over 116,000,000 (NCOA processed)
Geographic Coverage: Complete US (all 50 states)
Compliance Status: CCPA compliant with consent management
Targeting Categories Available
Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)
Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options
Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics
Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting
Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting
Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors
Multi-Channel Campaign Applications
Deploy across all major marketing channels:
Email marketing and automation
Social media advertising
Search and display advertising (Google, YouTube)
Direct mail and print campaigns
Telemarketing and SMS campaigns
Programmatic advertising platforms
Data Quality & Sources
Our consumer data aggregates from multiple verified sources:
Public records and government databases
Opt-in subscription services and registrations
Purchase transaction data from retail partners
Survey participation and research studies
Online behavioral data (privacy compliant)
Technical Delivery Options
File Formats: CSV, Excel, JSON, XML formats available
Delivery Methods: Secure FTP, API integration, direct download
Processing: Real-time NCOA, email validation, phone verification
Custom Selections: 1,000+ selectable demographic and behavioral attributes
Minimum Orders: Flexible based on targeting complexity
Unique Value Propositions
Dual Spouse Targeting: Reach both household decision-makers for maximum impact
Cross-Platform Integration: Seamless deployment to major ad platforms
Real-Time Updates: Monthly data refreshes ensure maximum accuracy
Advanced Segmentation: Combine multiple targeting criteria for precision campaigns
Compliance Management: Built-in opt-out and suppression list management
Ideal Customer Profiles
E-commerce retailers seeking customer acquisition
Financial services companies targeting specific demographics
Healthcare organizations with compliant marketing needs
Automotive dealers and service providers
Home improvement and real estate professionals
Insurance companies and agents
Subscription services and SaaS providers
Performance Optimization Features
Lookalike Modeling: Create audiences similar to your best customers
Predictive Scoring: Identify high-value prospects using AI algorithms
Campaign Attribution: Track performance across multiple touchpoints
A/B Testing Support: Split audiences for campaign optimization
Suppression Management: Automatic opt-out and DNC compliance
Pricing & Volume Options
Flexible pricing structures accommodate businesses of all sizes:
Pay-per-record for small campaigns
Volume discounts for large deployments
Subscription models for ongoing campaigns
Custom enterprise pricing for high-volume users
Data Compliance & Privacy
VIA.tools maintains industry-leading compliance standards:
CCPA (California Consumer Privacy Act) compliant
CAN-SPAM Act adherence for email marketing
TCPA compliance for phone and SMS campaigns
Regular privacy audits and data governance reviews
Transparent opt-out and data deletion processes
Getting Started
Our data specialists work with you to:
Define your target audience criteria
Recommend optimal data selections
Provide sample data for testing
Configure delivery methods and formats
Implement ongoing campaign optimization
Why We Lead the Industry
With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.
Contact our team to discuss your specific targeting requirements and receive custom pricing for your marketing objectives.
The Decennial Census provides population estimates and demographic information on residents of the United States.
The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.
Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.
The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.
The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).
The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.
VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.
The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.
The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.
Sample survey data
The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.
Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.
In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.
Face-to-face
As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.
a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.
b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
- Respondent's background characteristics (education, residential history, etc.);
- Reproductive history;
- Contraceptive knowledge and use;
- Antenatal and delivery care;
- Infant feeding practices;
- Child immunization;
- Fertility preferences and attitudes about family planning;
- Husband's background characteristics;
- Women's work information; and
- Knowledge of AIDS.
c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.
The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.
The results of the household and individual
The table RI- Demographic Data is part of the dataset Demographic Data, available at https://redivis.com/datasets/fh74-90v3ge9m2. It contains 734919 rows across 699 variables.
This data asset was created in response to House Report 117-401, which stated, "The Committee directs the USAID Administrator, in consultation with the Director of the Office of Personnel Management and the Director of the Office of Management and Budget, to submit a report to the appropriate congressional committees, not later than 180 days after enactment of this Act, on USAID's workforce data that includes disaggregated demographic data and other information regarding the diversity of the workforce of USAID. Such report shall include the following data to the maximum extent practicable and permissible by law: 1) demographic data of USAID workforce disaggregated by grade or grade-equivalent; 2) assessment of agency compliance with the Equal Employment Opportunity Commission Management Directive 715; and 3) data on the overall number of individuals who are part of the workforce, including all U.S. Direct Hires, personnel under personal services contracts, and Locally Employed staff at USAID. The report shall also be published on a publicly available website of USAID in a searchable database format." This data asset fulfills the final part of this requirement, to publish the data in a searchable database format. The data are compiled from USAID's 2021 MD-715 report, available at https://www.usaid.gov/reports/md-715. The original data source is the system National Finance Center Insight owned by the Treasury Department.
https://www.icpsr.umich.edu/web/ICPSR/studies/38734/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38734/terms
In the context of COVID-19, RAND and RWJF partnered again to build from the National Survey of Health Attitudes to implement a longitudinal survey to understand how health views and values have been affected by the experience of the pandemic, with particular focus on populations deemed vulnerable or underserved, including people of color and those from low to moderate-income backgrounds. The questions in this COVID-19 survey focused specifically on experiences related to the pandemic (e.g., financial, physical, emotional), how respondents viewed the disproportionate impacts of the pandemic, whether and how respondents' views and priorities regarding health actions and investments are changing (including the roles of government and the private sector), and how general values about such issues as freedom and racism may be related to pandemic views and response expectations. The study is a longitudinal study, which collected data in four waves. The study also included 2 populations: A sample of populations at greater risk, and a general population sample. This study included the results for Wave 2 for populations at greater risk. The questions in the surveys were largely similar across all four waves. Demographic info includes sex, marital status, household size, race and ethnicity, family income, employment status, age, and census region.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de531904https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de531904
Abstract (en): This collection provides information on live births in the United States during the calendar year 2011. The natality data in these files are a component of the vital statistics collection effort maintained by the federal government. Birth data is limited to births occurring in the United States to United States residents and nonresidents. Births occurring to United States citizens outside of the United States are not included in this data collection. Dataset 1 contains data on births occurring within the United States, while Dataset 2 contains data on births occurring in the United States territories of Puerto Rico, the U.S. Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana Islands. Variables describe the place of delivery, who was in attendance, and medical and health data such as the method of delivery, prenatal care, tobacco use during pregnancy, pregnancy history, medical risk factors, and infant health characteristics. Birth rates, fertility rates, and other aggregate statistics can be found in the Detailed Technical Notes section of the ICPSR User Guide. Demographic information includes the child's sex and month and year of birth, the parents' ages, races, ethnicities, education levels, as well as the mother's marital status and residency status. This report presents detailed data on numbers and characteristics of births in 2011, birth and fertility rates, maternal demographic and health characteristics, place and attendant at birth, and infant health characteristics within the United States and its territories. The data are not weighted and no weight variables are present in the collection. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Live births in the United States and its territories during calendar year 2011. Smallest Geographic Unit: County One-hundred percent of birth certificates in calendar year 2011. record abstractsThe territories file, which includes data on births occurring in Puerto Rico, the U.S. Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Marianas Islands, includes limited geographic detail. Information identifying individual territories and counties with populations of 100,000 or more by place of occurrence and residence are available in this file.This collection includes data based on both the 1989 Revision of the U.S. Standard Certificate of Live Birth (unrevised) and the 2003 Revision of the U.S. Standard Certificate of Live Birth (revised). However, in general, only data comparable between 1989 and 2003 revisions and data exclusive to the 2003 revision are included. Beginning with the 2005 data year, the micro-data natality file no longer includes geographic detail (e.g., state or county of birth). Information on the NCHS data release policy is available through the National Center for Health Statistics Web site. Tabulations of birth data by state and for counties with populations of 100,000 or more may be made using VitalStats. Procedures for requesting micro-data files with geographic detail are provided in the National Center for Health Statistics data release policy.Beginning with the 2007 data year, data items such as maternal anemia, ultrasound, and alcohol use are no longer available in public use files.Beginning with the 2011 data year, unrevised data for educational attainment, prenatal care, and type of vaginal and cesarean delivery are no longer included in the data files. Data for these items from the 1989 revision are not comparable with data from the 2003 revision. For additional information on the Natality Detail File Series, please visit the National Center for Health Statistics Web site.
By Health [source]
The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.
The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.
Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.
- Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
- Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
- Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...
https://www.icpsr.umich.edu/web/ICPSR/studies/8093/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8093/terms
Summary Tape File (STF) 1 consists of four sets of computer-readable data files containing detailed tabulations of the nation's population and housing characteristics produced from the 1980 Census. This series is comprised of STF 1A, STF 1B, STF 1C, and STF 1D. All files in the STF 1 series are identical, containing 321 substantive data variables organized in the form of 59 "tables," as well as standard geographic identification variables. All of the data items contained in the STF 1 files were tabulated from the "complete count" or "100-percent" questions included on the 1980 Census questionnaire. All four groups of files within the STF 1 series have identical record formats and technical characteristics and differ only in the types of geographical areas for which the summarized data items are presented. STF 1D provides summaries for state or state equivalent, congressional district (as constituted for the 98th Congress), county or county equivalent, places of 10,000 or more people, and minor civil divisions (MCD) or census county divisions (CCD). Housing items tabulated include occupancy/vacancy status, tenure, contract rent, value, condominium status, number of rooms, and plumbing facilities. Population items include demographic information such as age, sex, race, marital status, Spanish origin, household relationship, and household type. Selected aggregates, means, and medians are also provided. See the related collection, CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: SUMMARY TAPE FILE 1H (ICPSR 8401).
Country Population (Admin0) using aggregated Facebook high resolution population density data (https://data.humdata.org/organization/facebook).The world population data sourced from Facebook Data for Good is some of the most accurate population density data in the world. The data is accumulated using highly accurate technology to identify buildings from satellite imagery and can be viewed at up to 30-meter resolution. This building data is combined with publicly available census data to create the most accurate population estimates. This data is used by a wide range of nonprofit and humanitarian organizations, for example, to examine trends in urbanization and climate migration or discover the impact of a natural disaster on a region. This can help to inform aid distribution to reach communities most in need. There is both country and region-specific data available. The data also includes demographic estimates in addition to the population density information. This population data can be accessed via the Humanitarian Data Exchange website.
For the purpose of our partners and the community to find demographic information on individual member of households that applied for services provided by the Office of Resilience and Community services. Updated Quarterly. Data includes: Client IndexHousehold IndexRaceGenderEthnicityDisability StatusMilitary StatusHealth Insurance (Y/N)Employment StatusEducation StatusHead of Household (Y/N)Age
2016-2020 ACS 5-Year estimates of demographic variables (see below) compiled at the tract level.The American Community Survey (ACS) 5 Year 2016-2020 demographic information is a subset of information available for download from the U.S. Census. Tables used in the development of this dataset include: B01001 - Sex By Age; B03002 - Hispanic Or Latino Origin By Race; B11001 - Household Type (Including Living Alone); B11005 - Households By Presence Of People Under 18 Years By Household Type; B11006 - Households By Presence Of People 60 Years And Over By Household Type; B16005 - Nativity By Language Spoken At Home By Ability To Speak English For The Population 5 Years And Over; B25010 - Average Household Size Of Occupied Housing Units By Tenure, and; B15001 - Sex by Educational Attainment for the Population 18 Years and Over; To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Demographic Estimate Data by TractDate of Coverage: 2016-2020
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.