80 datasets found
  1. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  2. d

    City of Tempe 2022 Community Survey Data

    • catalog.data.gov
    • data-academy.tempe.gov
    • +8more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2022 Community Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  3. Vintage 2018 Population Estimates: Demographic Characteristics Estimates by...

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2018 Population Estimates: Demographic Characteristics Estimates by Age Groups [Dataset]. https://catalog.data.gov/dataset/vintage-2018-population-estimates-demographic-characteristics-estimates-by-age-groups
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

  4. ACS 5YR Demographic Estimate Data by Tract

    • hudgis-hud.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +2more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). ACS 5YR Demographic Estimate Data by Tract [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/b0d9506fcfa04762a882c3b6453e0144
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    2016-2020 ACS 5-Year estimates of demographic variables (see below) compiled at the tract level.The American Community Survey (ACS) 5 Year 2016-2020 demographic information is a subset of information available for download from the U.S. Census. Tables used in the development of this dataset include: B01001 - Sex By Age; B03002 - Hispanic Or Latino Origin By Race; B11001 - Household Type (Including Living Alone); B11005 - Households By Presence Of People Under 18 Years By Household Type; B11006 - Households By Presence Of People 60 Years And Over By Household Type; B16005 - Nativity By Language Spoken At Home By Ability To Speak English For The Population 5 Years And Over; B25010 - Average Household Size Of Occupied Housing Units By Tenure, and; B15001 - Sex by Educational Attainment for the Population 18 Years and Over; To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Demographic Estimate Data by TractDate of Coverage: 2016-2020

  5. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  6. U

    Business Demographics and Survival Rates, Borough

    • data.ubdc.ac.uk
    • data.europa.eu
    • +1more
    xls
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Business Demographics and Survival Rates, Borough [Dataset]. https://data.ubdc.ac.uk/dataset/business-demographics-and-survival-rates-borough
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Description

    Data on enterprise births, deaths, active enterprises and survival rates across boroughs.

    Data includes:
    1) the most recent annual figures for enterprise births and deaths. Births and deaths are identified by comparing active populations of enterprises for different years
    2) time series of the number of births and deaths of entrprises together with a percentage of births and deaths to active enterprises in a given year
    3) a time series of the number of active enterprises. Active enterprises are businesses that had either turnover or employment at any time during the reference period.
    4) survival rates of enterprises for up to 5 years after birth

    Using the most recent data, a chart showing the trend of the percentage of businesses that survive a year is shown below.

    https://s3-eu-west-1.amazonaws.com/londondatastore-upload/busi-demog-survival-chart.png" alt="1 year survival">

    Data on size of firms (micro-business, SME, large) for business and employees in London by industry can be found on the ONS website.

    More Business Demographics data on the ONS website

  7. World Health Survey 2003 - Belgium

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 17, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Belgium [Dataset]. https://microdata.worldbank.org/index.php/catalog/1694
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Belgium
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  8. a

    Demographic by Race 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Jan 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Demographic by Race 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/demographic-by-race-2019
    Explore at:
    Dataset updated
    Jan 28, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e19Estimate from 2014-19 ACS_m19Margin of Error from 2014-19 ACS_00_v19Decennial 2000, re-estimated to 2019 geography_00_19Change, 2000-19_e10_v192006-10 ACS, re-estimated to 2019 geography_m10_v19Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  9. w

    Demographic and Health Survey 2022 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2024). Demographic and Health Survey 2022 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/6122
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    2022 - 2023
    Area covered
    Ghana
    Description

    Abstract

    The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.

    The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5

    The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).

    The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Face-to-face computer-assisted interviews [capi]

    Research instrument

    Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.

    Cleaning operations

    DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.

    From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.

    Response rate

    A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women and men
    • Heaping in anthropometric measurements for children (digit preference)
    • Observation of mosquito nets
    • Observation of handwashing facility
    • School attendance by single year of age
    • Vaccination cards photographed
    • Number of
  10. d

    Demographic Profiles of ACS 5 Year Estimates at the Public Use Microdata...

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2020). Demographic Profiles of ACS 5 Year Estimates at the Public Use Microdata Areas (PUMA) Level [Dataset]. https://catalog.data.gov/dataset/demographic-profiles-of-acs-5-year-estimates-at-the-public-use-microdata-areas-puma-level
    Explore at:
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    data.cityofnewyork.us
    Description

    Four tables of ACS demographic profiles for 2012 to 2016 at the PUMA level. Four profiles include demographics, economic, housing and sociological. Column headers in this database are abbreviated. Please see the data dictionary (shown in worksheet entitled “Dictionary”) for an explanation of these abbreviated headers.

  11. Population in Taiwan 2014-2024, by broad age group

    • statista.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Taiwan 2014-2024, by broad age group [Dataset]. https://www.statista.com/statistics/321439/taiwan-population-distribution-by-age-group/
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Taiwan
    Description

    In 2024, the share of the population in Taiwan aged 65 and older accounted for approximately 19.2 percent of the total population. While the share of old people on the island increased gradually over recent years, the percentage of the working-age population and the children have both declined. Taiwan’s aging population With one of the lowest fertility rates in the world and a steadily growing life expectancy, the average age of Taiwan’s population is increasing quickly, and the share of people aged 65 and above is expected to reach around 38.4 percent of the total population in 2050. This development is also reflected in Taiwan’s population pyramid, which shows that the size of the youngest age group is only half of the size of age groups between 40 and 60 years. The rapid aging of the populations puts a heavy burden on the social insurance system. Old-age dependency is expected to reach more than 70 percent by 2050, meaning that by then three people of working age will have to support two elders, compared to only one elder supported by four working people today. Aging societies in East Asia Today, many countries in East Asia have very low fertility rates and face the challenges of aging societies. This is especially true among those countries that experienced high economic growth in the past, which often resulted in quickly receding birth rates. Japan was one of the first East Asian countries witnessing this demographic change, as is reflected in its high median age. South Korea had the lowest fertility rate of all Asian countries in recent years, and with China, one of the largest populations on earth joined the ranks of quickly aging societies.

  12. U.S. leading social media platform users 2023, by age group

    • statista.com
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. leading social media platform users 2023, by age group [Dataset]. https://www.statista.com/statistics/1337525/us-distribution-leading-social-media-platforms-by-age-group/
    Explore at:
    Dataset updated
    May 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 4, 2022 - Sep 29, 2023
    Area covered
    United States
    Description

    As of September 2023, 29 percent of Facebook users in the United States were aged 30 to 39 years, while a further 29 percent of users were aged 50 to 64 years, making these demographics the biggest audiences of the online network in the country. Meta’s Instagram was also popular among users aged 30 to 39 years, who accounted for 32 percent of the audience of the photo-based platform, while those aged 18 to 29 years accounted for another third of the network’s U.S. users. Overall, TikTok and Snapchat were the most popular social media platforms amongst younger audiences, while LinkedIn was the least used platform by those aged 18 to 29 in the United States as of 2023.

    The social media market in the United States

    The number of social media users in the United States has shown continuous growth in the past years, and it is forecast to continue increasing to reach 342 million users in 2029. As of 2023, the social network user penetration in the United States amounted to an impressive 91.56 percent, meaning that more than nine in ten people in the country engaged with online platforms. Furthermore, Facebook was by far the most popular social media platform in the United States, accounting for 45 percent of all social media visits in 2023, followed by Pinterest with 21.2 percent of visits.

    The global social media landscape

    As of April 2024, 5.07 billion people were social media users, accounting for 62.6 percent of the world’s population. Northern Europe was the region with the highest social media penetration rate with a reach of 80.2 percent, followed by Western Europe with 78.2 percent and Eastern Asia 74.9 percent. In contrast, less than one in ten people in Middle Africa used social networks. Facebook’s popularity is not limited to the United States: this network leads the market on a global scale, and it accumulated more than three billion monthly active users (MAU) as of 2024, which is far more any other social media platform. 272014 YouTube, Instagram, and WhatsApp followed, all with two billion or more MAU.

  13. Percentage of population with knowledge of English and French by census...

    • open.canada.ca
    • datasets.ai
    • +2more
    esri rest, fgdb/gdb +3
    Updated Jan 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2022). Percentage of population with knowledge of English and French by census division, 2016 [Dataset]. https://open.canada.ca/data/en/dataset/7043f8c1-d5e5-492f-8bb1-7eeac9f2a74f
    Explore at:
    html, mxd, wms, esri rest, fgdb/gdbAvailable download formats
    Dataset updated
    Jan 31, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2016
    Area covered
    French
    Description

    This service shows the percentage of population, excluding institutional residents, with knowledge of English and French for Canada by 2016 census division. The data is from the Census Profile, Statistics Canada Catalogue no. 98-316-X2016001. Knowledge of official languages refers to whether the person can conduct a conversation in English only, French only, in both languages or in neither language. For a child who has not yet learned to speak, this includes languages that the child is learning to speak at home. For additional information refer to 'Knowledge of official languages' in the 2016 Census Dictionary. For additional information refer to 'Knowledge of official languages' in the 2016 Census Dictionary. To have a cartographic representation of the ecumene with this socio-economic indicator, it is recommended to add as the first layer, the “NRCan - 2016 population ecumene by census division” web service, accessible in the data resources section below.

  14. Financial Literacy and Financial Services Survey 2011 - Bosnia and...

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IPSOS (2021). Financial Literacy and Financial Services Survey 2011 - Bosnia and Herzegovina [Dataset]. https://microdata.unhcr.org/index.php/catalog/396
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    IPSOShttp://www.ipsos.com/
    Time period covered
    2011
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    The survey on financial literacy among the citizens of Bosnia and Herzegovina was conducted within a larger project that aims at creating the Action Plan for Consumer Protection in Financial Services.

    The conclusion about the need for an Action Plan was reached by the representatives of the World Bank, the Federal Ministry of Finance, the Central Bank of Bosnia and Herzegovina, supervisory authorities for entity financial institutions and non-governmental organizations for the protection of consumer rights, based on the Diagnostic Review on Consumer Protection and Financial Literacy in Bosnia and Herzegovina conducted by the World Bank in 2009-2010. This diagnostic review was conducted at the request of the Federal Ministry of Finance, as part of a larger World Bank pilot program to assess consumer protection and financial literacy in developing countries and middle-income countries. The diagnostic review in Bosnia and Herzegovina was the eighth within this project.

    The financial literacy survey, whose results are presented in this report, aims at establishing the basic situation with respect to financial literacy, serving on the one hand as a preparation for the educational activities plan, and on the other as a basis for measuring the efficiency of activities undertaken.

    Geographic coverage

    Data collection was based on a random, nation-wide sample of citizens of Bosnia and Herzegovina aged 18 or older (N = 1036).

    Analysis unit

    Household, individual

    Universe

    Population aged 18 or older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SUMMARY

    In Bosnia and Herzegovina, as is well known, there is no completely reliable sample frame or information about universe. The main reasons for such a situation are migrations caused by war and lack of recent census data. The last census dates back to 1991, but since then the size and distribution of population has significantly changed. In such a situation, researchers have to combine all available sources of population data to estimate the present size and structure of the population: estimates by official statistical offices and international organizations, voters? lists, list of polling stations, registries of passport and ID holders, data from large random surveys etc.

    The sample was three-stage stratified: in the first stage by entity, in the second by county/region and in the third by type of settlement (urban/rural). This means that, in the first stage, the total sample size was divided in two parts proportionally to number of inhabitants by entity, while in the second stage the subsample size for each entity was further divided by regions/counties. In the third stage, the subsample for each region/county was divided in two categories according to settlement type (rural/urban).

    Taking into the account the lack of a reliable and complete list of citizens to be used as a sample frame, a multistage sampling method was applied. The list of polling stations was used as a frame for the selection of primary sampling units (PSU). Polling station territories are a good choice for such a procedure since they have been recently updated, for the general elections held in October 2010. The list of polling station territories contains a list of addresses of housing units that are certainly occupied.

    In the second stage, households were used as a secondary sampling unit. Households were selected randomly by a random route technique. In total, 104 PSU were selected with an average of 10 respondents per PSU. The respondent from the selected household was selected randomly using the Trohdal-Bryant scheme.

    In total, 1036 citizens were interviewed with a satisfactory response rate of around 60% (table 1). A higher refusal rate is recorded among middle-age groups (table 2). The theoretical margin of error for a random sample of this size is +/-3.0%.

    Due to refusals, the sample structure deviated from the estimated population structure by gender, age and education level. Deviations were corrected by RIM weighting procedure.

    MORE DETAILED INFORMATION

    IPSOS designed a representative sample of approximately 1.000 residents age 18 and over, proportional to the adult populations of each region, based on age, sex, region and town (settlement) type.

    For this research we designed three-stage stratified representative sample. First we stratify sample at entity level, regional level and then at settlement type level for each region.

    Sample universe:

    Population of B&H -18+; 1991 Census figures and estimated population dynamics, census figures of refugees and IDPs, 1996. Central Election Commision - 2008; CIPS - 2008;

    Sampling frame:

    Polling stations territory (approximate size of census units) within strata defined by regions and type of settlements (urban and rural) Polling stations territories are chosen to be used as primary units because it enables the most reliable sample selection, due to the fact that for these units the most complete data are available (dwelling register - addresses)

    Type of sample:

    Three stage random representative stratified sample

    Definition and number of PSU, SSU, TSU, and sampling points

    • PSU - Polling station territory Definition: Polling stations territories are defined by street(s) name(s) and dwelling numbers; each polling station territory comprises approximately 300 households, with exception of the settlements with less than 300 HH which are defined as one unite. Number of PSUs in sample universe: 4710
    • SSU - Household Definition: One household comprises people living in the same apartment and sharing the expenditure for food
    • TSU - Respondent Definition: Member of the HH , 18+ Number of TSUs in sample universe: = 2.966.766
    • Sampling points Approximately 10 respondents per one PSU, total 104

    Stratification, purpose and method

    • First level strata: Federation of B&H Republika Srpska Brc ko District
    • Second level strata: 10 cantons 2 regions -
    • Third level strata: urban and rural settlements
    • Purpose: Optimisation of the sample plan, and reducing the sampling error
    • Method: The strata are defined by criteria of optimal geographical and cultural uniformity

    • Selection procedure of PSU, SSU, and respondent Stratification, purpose and method

    • PSU Type of sampling of the PSU: Polling station territory chosen with probability proportional to size (PPS) Method of selection: Cumulative (Lachirie method)

    • SSU Type of sampling of the SSU: Sample random sampling without replacement Method of selection: Random walk - Random choice of the starting point

    • TSU - Respondent Type of sampling of respondent: Sample random sampling without replacement Method of selection: TCB (Trohdal-Bryant scheme)

    • Sample size N=1036 respondents

    • Sampling error Marginal error +/-3.0%

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey was modelled after the identical survey conducted in Romania. The questionnaire used in the Financial Literacy Survey in Romania was localized for Bosnia and Herzegovina, including adaptations to match the Bosnian context and methodological improvements in wording of questions.

    Cleaning operations

    Before data entry, 100% logic and consistency controls are performed first by local supervisors and once later by staff in central office.

    Verification of correct data entry is assured by using BLAISE system for data entry (commercial product of Netherlands statistics), where criteria for logical and consistency control are defined in advance.

    Response rate

    • Nobody at home: 2,8%
    • Eligible person is not home: 2,8%
    • Refusal : 32,79%
    • Given up after a minimum of two visits: 0,82%
    • Other (excluded after control): 0,29%
    • Finished: 60,5%
  15. Demographic and Health Survey 1999-2000 - Bangladesh

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra and Associates/ National Institute of Population Research and Training (NIPORT) (2017). Demographic and Health Survey 1999-2000 - Bangladesh [Dataset]. https://datacatalog.ihsn.org/catalog/123
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    National Institute of Population Research and Traininghttp://niport.gov.bd/
    Authors
    Mitra and Associates/ National Institute of Population Research and Training (NIPORT)
    Time period covered
    1999 - 2000
    Area covered
    Bangladesh
    Description

    Abstract

    The 1999-2000 Bangladesh Demographic and Health Survey (BDHS) is a nationally representative sample survey designed to provide information on basic national indicators of social progress including fertility, contraceptive knowledge and use, fertility preference, childhood mortality, maternal and child health, nutritional status of mothers and children and awareness of AIDS.

    The 1999-2000 BDHS provides a comprehensive look at levels and trends in key health and demographic parameters for policy makers and program managers. The fertility has declined from 6.3 children per women in 1975 to 3.3 in 1999-2000. The pace of fertility decline has slowed in the most recent period compared to the rapid decline during late 1980s and early 1990s. The BDHS 1999-2000 findings also show the increasing trend of contraceptive use, declining childhood mortality, and improving nutritional status.

    The Bangladesh Demographic and Health Survey (BDHS) is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS survey are to: - Assess the overall demographic situation in Bangladesh - Assist in the evaluation of the population and health programs in Bangladesh - Advance survey methodology.

    More specifically, the objective of the BDHS survey is to provide up-to-date information on fertility and childhood mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; nutrition levels; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in the country.

    The 1999-2000 BDHS survey was conducted under the authority of the National Institute for Population Research and Training (NIPORT) of the Ministry of Health and Family Welfare. The survey was implemented by Mitra and Associates, a Bangladeshi research firm located in Dhaka. Macro International Inc. of Calverton, Maryland, provided technical assistance to the project as part of its international Demographic and Health Surveys program, and financial assistance was provided by the U.S. Agency for International Development (USAID)/Bangladesh.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 10-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    Bangladesh is divided into 6 administrative divisions, 64 districts (zillas), and 490 thanas. In rural areas, thanas are divided into unions and then mauzas, a land administrative unit. Urban areas are divided into wards and then mahallas. The 1999-2000 BDHS survey employed a nationally representative, two-stage sample that was selected from the master sample maintained by the Bangladesh Bureau of Statistics for the implementation of surveys before the next census (2001). The master sample consists of 500 primary sampling units (PSUs) with enough PSUs in each stratum except for the urban strata of the Barisal and Sylhet divisions. In the rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the master sample were selected with probability proportional to size from the 1991 census frame, the units for the BDHS survey were subselected from the master sample with equal probability to make the BDHS selection equivalent to selection with probability proportional to size. A total of 341 primary sampling units were used for the BDHS survey (99 in urban areas and 242 in rural areas).

    Since one objective of the BDHS survey is to provide separate survey estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for the Barisal and Sylhet divisions and for urban areas relative to the other divisions. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.

    Mitra and Associates conducted a household listing operation in all the sample points from September to December 1999. A systematic sample of 10,268 households was then selected from these lists. Every third household was selected for the men's survey, meaning that in addition to interviewing all ever-married women age 10-49, interviewers also interviewed all currently married men age 15-59 in those selected households. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 3,000 currently married men age 15-59.

    Note: See detailed in APPENDIX A of the survey report

    Mode of data collection

    Face-to-face

    Research instrument

    Four types of questionnaires were used for the BDHS survey: a Household Questionnaire, a Women’s Questionnaire, a Men’s Questionnaire, and a set of questionnaires for the Service Provision Assessment (SPA) (community, health facilities, fieldworkers). The contents of these questionnaires were based on the MEASURE DHS+ Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. These model questionnaires were adapted for use in Bangladesh during a series of meetings with a small Technical Task Force (TTF) that consisted of representatives from NIPORT; Mitra and Associates; USAID/Dhaka; the International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B); Dhaka University; and Macro International Inc. (see Appendix A for a list of members). Draft questionnaires were then circulated to other interested groups and were reviewed by the BDHS Technical Review Committee. The questionnaires were developed in English and then translated in to and printed in Bangla.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.

    The Women’s Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, etc.) · Reproductive history · Knowledge and use of family planning methods · Antenatal and delivery care · Breastfeeding and weaning practices · Vaccinations and health of children under age five · Marriage · Fertility preferences · Husband’s background and respondent’s work · Height and weight of children under age five and of their mother · HIV and AIDS.

    The Men’s Questionnaire was similar to that for women except that it omitted the sections on reproductive history, antenatal and delivery care, breastfeeding, vaccinations, and height and weight. The questionnaire for the Service Provision Assessment was completed for each sample point and included questions about the existence in the community of income-generating activities and other development organizations and the availability and accessibility of health and family planning services. Detailed analysis of the SPA data will be presented in a separate report.

    Cleaning operations

    All questionnaires for the BDHS survey were returned to Dhaka for data processing at Mitra and Associates. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing inconsistencies found by the computer programs. The data were processed on six microcomputers working in double shifts and carried out by ten data entry operators and two data entry supervisors. The BDHS data entry and editing programs were written in ISSA (Integrated System for Survey Analysis). Data processing commenced in mid-December 1999 and was completed by end of April 2000.

    Response rate

    A total of 10,268 households were selected for the sample, of which 9,854 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 9,922 households occupied, 99 percent were successfully interviewed. In these households, 10,885 women were identified as eligible for the individual interview (i.e., ever-married and age 10-49) and interviews were completed for 10,544 or 97 percent of them. In the one-third of the households that were selected for inclusion in the men’s survey, 2,817 currently married men age 15-59 were identified, of which 2,556 or 91 percent were interviewed.

    The principal reason for nonresponse among eligible women and men was the failure to find them at home despite repeated visits to the household. The nonresponse rate was low.

    Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were

  16. A

    ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by...

    • analyst-2.ai
    Updated Jul 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-cases-by-population-characteristics-over-time-097d/latest
    Explore at:
    Dataset updated
    Jul 23, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.

    A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers

    These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.

    Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.

    Gender * The City collects information on gender identity using these guidelines.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation
    * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures.
    These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing

    --- Original source retains full ownership of the source dataset ---

  17. i

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://datacatalog.ihsn.org/catalog/5178
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  18. Demographic and Health Survey 2018 - Nigeria

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Population Commission (NPC) (2021). Demographic and Health Survey 2018 - Nigeria [Dataset]. https://catalog.ihsn.org/catalog/8783
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    National Population Commissionhttps://nationalpopulation.gov.ng/
    Authors
    National Population Commission (NPC)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.

    The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.

    The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.

    Response rate

    A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)

    Note: See detailed data quality tables in APPENDIX C of the report.

  19. a

    Demographics of Police Stops

    • hub.arcgis.com
    • open-data.bouldercolorado.gov
    Updated Aug 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BoulderCO (2020). Demographics of Police Stops [Dataset]. https://hub.arcgis.com/datasets/1f850e90d27a4bf58d5b66405d59045f
    Explore at:
    Dataset updated
    Aug 27, 2020
    Dataset authored and provided by
    BoulderCO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This data contains information related to officer-initated stops by the City of Boulder Police Department. Information on the demographics of the person stopped (sex, race, ethnicity, year of birth, whether they are a Boulder resident) is included in this file. See the "Outcomes of Police Stops" dataset for more details on the outcome of the stop (stop location, duration, search, and result). This demographic data is collected at the stop level, and no individual-level identifiers are recorded in the system during a stop.The data published are limited to stops where the officer initiated, or had discretion, in making a stop. Instances where an officer is responding to a community or police call are considered non-discretionary, and demographics information is not collected for those stops and not included here. There are some instances of non-discretion within a stop interaction as well. For example, there may be instances where there is an outstanding felony warrant for the person stopped, and by law the officer must arrest that person.Please read the methodology and data dictionary documents for more information. The fields for this demographics dataset are referred to as the "Main" file in the data dictionary.

  20. a

    Demographic by Race (by US Congress) 2018

    • hub.arcgis.com
    • opendata.atlantaregional.com
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Demographic by Race (by US Congress) 2018 [Dataset]. https://hub.arcgis.com/datasets/GARC::demographic-by-race-by-us-congress-2018
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50

Demographic and Health Survey 1998 - Ghana

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 6, 2017
Dataset authored and provided by
Ghana Statistical Service (GSS)
Time period covered
1998 - 1999
Area covered
Ghana
Description

Abstract

The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

Geographic coverage

National

Analysis unit

  • Household
  • Children under five years
  • Women age 15-49
  • Men age 15-59

Kind of data

Sample survey data

Sampling procedure

The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

Note: See detailed description of sample design in APPENDIX A of the survey report.

Mode of data collection

Face-to-face

Research instrument

Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

Response rate

A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

Sampling error estimates

The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

Data appraisal

Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

Note: See detailed tables in APPENDIX C of the survey report.

Search
Clear search
Close search
Google apps
Main menu