The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.
The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.
The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.
All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.
Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.
A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.
Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
The data is prepared using AmeriCorps members who began service on any day in fiscal year (FY) 2017. The members may have served 1 to 365 days during their term. Members who are in never served, disqualified, pre-service, or deferred statuses were excluded from this analysis. AmeriCorps VISTA and AmeriCorps NCCC race and ethnicity data come from the member application to serve. The code to extract the data between the two programs is the same. The ASN race and ethnicity data comes from the enrollment form. The enrollment form may exist multiple times if the member enrolled in more than one term. It is not uncommon for each enrollment form to have conflicting information about the member’s race and ethnicity. The member may have enrollment form data for terms served outside of the timeframe of the dataset. For example, if we are reporting on members who began service in FY17, then a member who also served in FY16 may have race and ethnicity information in the FY16 enrollment form and no race or ethnicity information or conflicting information in the FY17 enrollment form. In the case of conflicting information, this analysis assumes each instance of race designation is correct. If a member reports themselves as “Asian or Asian American” in one enrollment form and “White” in another enrollment form, then the analysis categorizes this person as someone who identifies with multiple race selections vs. one or the other. In the case of ethnicity, if a member indicates that they are not Hispanic or Latino/a in one form, but that they are in another, this analysis assumes the affirmative—and they will be categorized as Hispanic or Latino/a. Lastly, the totals include the total results from the query plus the difference between the query and the raw count of members who started service in that fiscal year. The members who did not have a record in the invite table and enrollment table were added to the non-response category. Senior Corps Figures come from the Annual Progress Report Supplement as of April 11, 2018. Percentages are calculated from totals of the subcategories, excluding the non-response categories.
Demographic reports on TSP participant behavior and investment manager diversity are reported annually to Congress and available to the public via FRTIB’s Open Data Plan. Reports are in PDF format with included data tables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains supplementary materials used in the conduct of "Assessing the Influence of Innovation Characteristics on the Implementation Process of an Optimised Tuberculosis Diabetes Integrated Care Package (Opt TBD) -A Mixed Method Study Protocol". These documents are provided to enhance transparency, facilitate replication, and support further research. The contents include:Informed Consent FormsThese forms were used to obtain voluntary, informed consent from participants prior to their involvement in the study. They outline the study's purpose, procedures, risks and benefits, confidentiality safeguards, and the participant's right to withdraw at any time.Participant Information SheetsThese sheets were shared with participants to provide detailed information about the study, including its background, what participation entails, data handling procedures, and contact details for further inquiries or concerns.QuestionnairesThese structured tools were used to collect quantitative data from participants. The questionnaires include questions relevant to the study objectives and were developed based on relevant literature and expert input.Topic Guides (Interviews)These guides were used during in-depth interviews or focus group discussions to ensure consistency across sessions. They contain open-ended questions aligned with the study’s aims and were pilot-tested or reviewed for appropriateness.Participant Demographic FormsThese forms were used to collect background information (e.g., age, gender, education level, occupation) to contextualize participant responses and describe the study population.All materials were approved by the relevant ethics review board(s) and were developed with cultural and contextual appropriateness in mind. These documents are shared for academic and educational purposes and should be adapted with caution to suit other settings.
2016-2020 ACS 5-Year estimates of demographic variables (see below) compiled at the tract level.The American Community Survey (ACS) 5 Year 2016-2020 demographic information is a subset of information available for download from the U.S. Census. Tables used in the development of this dataset include: B01001 - Sex By Age; B03002 - Hispanic Or Latino Origin By Race; B11001 - Household Type (Including Living Alone); B11005 - Households By Presence Of People Under 18 Years By Household Type; B11006 - Households By Presence Of People 60 Years And Over By Household Type; B16005 - Nativity By Language Spoken At Home By Ability To Speak English For The Population 5 Years And Over; B25010 - Average Household Size Of Occupied Housing Units By Tenure, and; B15001 - Sex by Educational Attainment for the Population 18 Years and Over; To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Demographic Estimate Data by TractDate of Coverage: 2016-2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Page, AZ population pyramid, which represents the Page population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Page Population by Age. You can refer the same here
The database FOLKNET contains information about the population in Sweden’s parishes, cities and municipalities according to the geographical division around 1990, every ten years during the period 1810–1990.
The data has been collected by Christian Svärd, and the Demographic Data Base has digitized the information. The information has mainly been taken from Statistics Sweden’s historical publications. Additional data have been collected from the population forms of the database TABVERK.
The database POPULATION is freely available from the home page of the Demographic Data Base.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Legal Form of Organization Statistics for Nonemployer Firms by Industry, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, Metro Areas, and Counties: 2022.Table ID.ABSNESD2022.AB2200NESD03.Survey/Program.Economic Surveys.Year.2022.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2022 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2025-05-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Data are also obtained from administrative records, the 2022 Economic Census, and other economic surveys..Methodology.Data Items and Other Identifying Records.Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)These data are aggregated by sex, ethnicity, race, and veteran status when classifiable.The data are also shown by the following legal form of organization (LFO) categories: S-Corporations C-Corporations Individual proprietorships Partnerships Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2022 data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, the total of all sectors (00) NAICS is shown for:Metropolitan Statistical AreasMicropolitan Statistical AreasCountiesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census Bureau data sources that include the Business Register (BR), Internal Revenue Service (IRS) tax Form 1040 data, tax Schedule K-1 data, Decennial Census and American Community Survey (ACS) data, Social Security Administration's database (Numident), and AR from the Department of Veterans Affairs (VA).For more information, see Nonemployer Statistics by Demographics Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. P-7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY25-0195).This dataset contains both nonemployer and employer data.For the nonemployer data, the NES-D uses noise infusion as the primary method of disclosure avoidance for receipts, and In certain circumstances, some individual cells may be suppressed for additional disclosure avoidance. More information on nonemployer firm disclosure avoidance is available in the Nonemployer Statistics by Demographics Methodology.For the employer data, data rows with high relative standard errors (RSE) are not presented. Additionally, firm counts are suppressed when other select statistics in the same row are suppressed. More information on employer firm disclosure avoidance is available in the Annual Business Survey Methodology..Te...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table includes information on business demography according to the European standard. Figures in this table are also submitted in this form to Eurostat. Information concerns the population of active enterprises, enterprise births and deaths, and the 1, 2, 3, 4 and 5 year survivors after birth, broken down by size class based on number of employees and by the National Classification of Economic Activity 2008 (NCEA 2008, based on NACE Rev 2.0). Data also includes persons employed and employees in active enterprises, births and deaths, as well as persons employed for surviving births at the start and end of the survival period.
Data available from: 2010
Status of the figures: The figures in this table are final for 2010 to 2021. The figures for 2022 are provisional. Only the data on Dissolved companies for 2022 will be adjusted.
Changes as of October 16, 2024: The provisional figures for 2022 have been added.
When will new figures be released? Figures on a new reporting year (T – 2) will be published in July of the current year T.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Page population by year. The dataset can be utilized to understand the population trend of Page.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Public Law (P.L.) 94-171, enacted in 1975, directs the U.S. Census Bureau to make special preparations to provide redistricting data needed by the 50 states. It specifies that within a year following Census Day (by April 1, 2011), the Census Bureau must send the governor and legislature in each state the data they need to redraw districts for the United States Congress and state legislature. The Census 2010 Redistricting Data Program was set up to afford state officials an opportunity to define the small areas for which they wish to receive census population totals for redistricting purposes. Officials then could receive data for voting districts (e.g., election precincts, wards, state house and senate districts) in addition to standard census geographic areas, such as counties, cities, census tracts, and blocks. State participation in defining areas is voluntary and nonpartisan. There are four map types that support the 2010 Census Redistricting Data (Public Law [P.L.] 94-171) program. Each of these large format map types is produced in Adobeâ s portable document format (PDF). These georeferenced PDF files were created in compliance with the OGC PDF Geo-registration Encoding Best Practice Version 2.2 (OGC project document reference number OGC 08-139r2). They will also be available through the U.S. Census Bureau Map Products web site. In addition to the maps, other geographic products include the State Redistricting Data (P.L.94-171) Shapefiles and the 2010 Census Block Assignment Files, which provide census block relationships to voting districts, state legislative districts, school districts, and congressional districts. All four map types are produced in a set for each county or statistically equivalent entity (school district maps for the District of Columbia, Florida, Hawaii, Maryland, Nevada, and West Virginia are state-based). Each map set consists of one or more numbered parent sheets which cover the entire county. If necessary, separate inset sheets show areas of dense features at a larger scale. Inset areas are identified with letters. If the set has more than one parent sheet, an index sheet is also included which depicts the arrangement of the parent sheets and inset areas in relation to the county boundary and selected major features. All of the parent sheets within a county are produced at the same scale, while maps for adjacent counties may be at different scales. The objective of each map type is to use the smallest number of sheets while preserving legibility of geographic entity names and feature identifiers. The physical size of the county and the density of features also affect the number of parent sheets and insets.
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table includes information on business demography according to the European standard. Figures in this table are also submitted in this form to Eurostat. Information concerns the population of active employers, employer births and deaths, and the 1, 2, 3, 4 and 5 year survivors after employer birth, broken down by size class based on number of employees and by the National Classification of Economic Activity 2008 (NCEA 2008, based on NACE Rev 2.0). Data also includes persons employed and employees in active employers, employer births and deaths, as well as persons employed for surviving employer births at the start and end of the survival period.
Data available from: 2010
Status of the figures: The figures in this table are final for 2010 to 2021. The figures for 2022 are provisional. Only the data on Dissolved companies for 2022 will be adjusted.
Changes as of October 16, 2024: The provisional figures for 2022 have been added.
When will new figures be released? Figures on a new reporting year (T – 2) will be published in July of the current year T.
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The data sheet contains socio demographic information, item wise analysis for internet use and factors for internet addiction.
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Sex for the U.S., States, Metro Areas, and Counties: 2021.Table ID.ABSNESD2021.AB00MYNESD01A.Survey/Program.Economic Surveys.Year.2021.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2021 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2024-08-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2022 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2022 ABS collection year produces statistics for the 2021 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Sex Female Male Equally male-owned and female-owned Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the total of all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaMetropolitan Statistical AreasCountiesData are also shown for the 3- and 4-digit NAICS code for:United StatesStates and the District of ColumbiaFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 4-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various administrative records (AR) and the Census Bureau dat...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Four tables of ACS demographic profiles for 2012 to 2016 at the NTA level. Four profiles include demographics, economic, housing and sociological. Column headers in this database are abbreviated. Please see the data dictionary (shown in worksheet entitled “Dictionary”) for an explanation of these abbreviated headers.
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.
The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.
The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.
All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.
Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.
A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.
Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.