Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Overview: Customer Segmentation Using K-Means Clustering
Introduction In this project, I analysed customer data from a retail store to identify distinct customer segments. The dataset includes key attributes such as age, city, and total sales of the customers. By leveraging K-Means clustering, an unsupervised machine learning technique, I aim to group customers based on their age and sales metrics. These insights will enable the creation of targeted marketing campaigns tailored to the specific needs and behaviours of each customer segment.
Objectives - Cluster Customers: Use K-Means clustering to group customers based on age and total sales. - Analyse Segments: Examine the characteristics of each customer segment. - Targeted Marketing: Develop strategies for personalized marketing campaigns targeting each identified customer group.
Data Description The dataset comprises:
Methodology - Data Preprocessing: Clean and preprocess the data to handle any missing or inconsistent entries. - Feature Selection: Focus on age and total sales as primary features for clustering. - K-Means Clustering: Apply the K-Means algorithm to identify distinct customer segments. - Cluster Analysis: Analyse the resulting clusters to understand the demographic and sales characteristics of each group. - Marketing Strategy Development: Create targeted marketing strategies for each customer segment to enhance engagement and sales.
Expected Outcomes - Customer Segments: Clear identification of customer groups based on age and purchasing behaviour. - Insights for Marketing: Detailed understanding of each segment to inform targeted marketing efforts. - Business Impact: Enhanced ability to tailor marketing campaigns, potentially leading to increased customer satisfaction and sales.
By clustering customers based on age and total sales, this project aims to provide actionable insights for personalized marketing, ultimately driving better customer engagement and higher sales for the retail store.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage
Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.
The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.
Facebook
TwitterThe User Profile Data is a structured, anonymized dataset designed to help organizations understand who their users are, what devices they use, and where they are located. Each record provides privacy-compliant linkages between user IDs, demographic profiles, device intelligence, and geolocation data, offering deep context for analytics, segmentation, and personalization.
Built for privacy-safe analytics, the dataset uses hashed identifiers like phone number and email and standardized formats, making it easy to integrate into big-data platforms, AI pipelines, and machine learning models for advanced analytics.
Demographic insights include gender, age, and age group, essential for audience profiling, marketing optimization, and consumer intelligence. All gender data is user-declared and AI-verified through image-based avatar validation, ensuring data accuracy and authenticity.
The dataset’s Device Intelligence Layer includes rich technical attributes such as device brand, model, OS version, user agent, RAM, language, and timezone, enabling technical segmentation, performance analytics, and targeted ad delivery across diverse device ecosystems.
On the location and POI front, the dataset combines GPS-based and IP-based coordinates—including country, region, city, latitude, longitude —to provide high-precision geospatial insights. This enables mobility pattern analysis, market expansion planning, and POI clustering for advanced location intelligence.
Each user record contains onboarding and lifecycle fields like unique IDs, and profile update timestamps, allowing accurate tracking of user acquisition trends, data freshness, and activity duration.
🔍 Key Features • 1st-party, consent-based demographic & device data • AI-verified gender insights via avatar recognition • OS-level app data with 120+ daily sessions per user • Global coverage across APAC and emerging markets • GPS + IP-based geolocation & POI intelligence • Privacy-compliant, hashed identifiers for safe integration
🚀 Use Cases • Audience segmentation & lookalike modeling • Ad-tech and mar-tech optimization • Geospatial & POI analytics • Fraud detection & risk scoring • Personalization & recommendation engines • App performance & device compatibility insights
🏢 Industries Served Ad-Tech • Mar-Tech • FinTech • Telecom • Retail Analytics • Consumer Intelligence • AI & ML Platforms
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Mall Shoppers Customer Segmentation Dataset
Overview:
The Mall Shoppers Customer Segmentation Dataset is a rich collection of data designed to provide insights into the shopping behaviors and demographic profiles of customers visiting a mall. This dataset is pivotal for businesses aiming to tailor their marketing strategies, improve customer engagement, and enhance the shopping experience through targeted offers and services.
Content:
The dataset includes information on several hundred mall visitors, encompassing a variety of features such as:
Purpose:
The primary purpose of this dataset is to enable the identification of distinct customer segments within the mall's clientele. By analyzing patterns in age, income, spending score, and gender, businesses can uncover valuable insights into customer preferences and behaviors. This, in turn, allows for the development of targeted marketing strategies, personalized shopping experiences, and improved product offerings to meet the diverse needs of each customer segment.
Applications:
This dataset is an excellent resource for: - Customer Segmentation: Utilizing clustering techniques to categorize customers into meaningful groups based on their features. - Targeted Marketing: Crafting personalized marketing campaigns aimed at specific customer segments to increase engagement and sales. - Market Analysis: Understanding the demographic makeup and spending habits of mall visitors to inform business decisions and strategies. - Personalization: Enhancing the customer experience through personalized services, recommendations, and offers.
Conclusion:
The Mall Shoppers Customer Segmentation Dataset offers a foundational step towards a deeper understanding of customer dynamics in a retail environment. It serves as a valuable asset for retailers, marketers, and business analysts seeking to leverage data-driven insights for strategic advantage.
Facebook
TwitterSuccess.ai’s Consumer Marketing Data API empowers your marketing, analytics, and product teams with on-demand access to a vast and continuously updated dataset of consumer insights. Covering detailed demographics, behavioral patterns, and purchasing histories, this API enables you to go beyond generic outreach and craft tailored campaigns that truly resonate with your target audiences.
With AI-validated accuracy and support for precise filtering, the Consumer Marketing Data API ensures you’re always equipped with the most relevant data. Backed by our Best Price Guarantee, this solution is essential for refining your strategies, improving conversion rates, and driving sustainable growth in today’s competitive consumer landscape.
Why Choose Success.ai’s Consumer Marketing Data API?
Tailored Consumer Insights for Precision Targeting
Comprehensive Global Reach
Continuously Updated and Real-Time Data
Ethical and Compliant
Data Highlights:
Key Features of the Consumer Marketing Data API:
Granular Targeting and Segmentation
Flexible and Seamless Integration
Continuous Data Enrichment
AI-Driven Validation
Strategic Use Cases:
Highly Personalized Marketing Campaigns
Market Expansion and Product Launches
Competitive Analysis and Trend Forecasting
Customer Retention and Loyalty Programs
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Data Accuracy with AI Validation
Customizable and Scalable Solutions
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This simulated customer dataset provides a practical foundation for performing segmentation analysis and identifying distinct customer groups. The dataset encompasses a blend of demographic and behavioral information, equipping users with the necessary data to develop targeted marketing strategies, personalize customer experiences, and ultimately drive sales growth.
This dataset is structured to provide a comprehensive view of each customer, combining demographic information with detailed purchasing behavior. The columns included are:
The insights derived from this dataset can be applied to several key business areas:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.
Facebook
TwitterTapestry segment descriptions can be found here..http://www.esri.com/library/brochures/pdfs/tapestry-segmentation.pdf For more than 30 years, companies, agencies, and organizations have used segmentation to divide and group their consumer markets to more precisely target their best customers and prospects. This targeting method is superior to using “scattershot” methods that might attract these preferred groups. Segmentation explains customer diversity, simplifies marketing campaigns, describes lifestyle and lifestage, and incorporates a wide range of data. Segmentation systems operate on the theory that people with similar tastes, lifestyles, and behaviors seek others with the same tastes—“like seeks like.” These behaviors can be measured, predicted, and targeted. Esri’s Tapestry Segmentation system combines the “who” of lifestyle demography with the “where” of local neighborhood geography to create a model of various lifestyle classifications or segments of actual neighborhoods with addresses—distinct behavioral market segments. The tapestry segmentation is almost comical in the sense that it trys to describe such small details of individuals daily lives just by analyzing the data provided on your CENSUS form. These segements are not only ideal for marketing and targeting lifestyles within a geographic location, but they are fun to read. Take the time to find out which segment you live in!
Facebook
TwitterArchetype Data’s B2C Consumer File is one of the most comprehensive and data-rich consumer datasets in the United States, encompassing over 260 million verified individuals and households. Designed for precision marketing, analytics, and customer intelligence, this dataset delivers unparalleled depth across lifestyle, demographic, financial, and behavioral dimensions enabling businesses to understand, segment, and engage consumers with accuracy and confidence.
Each consumer record includes fundamental demographic elements such as name, age, gender, location, household composition, and contact information. Building upon that, Archetype Data enriches every profile with 400+ lifestyle, financial, and behavioral variables that capture consumer intent, spending capacity, purchasing habits, media preferences, and digital engagement patterns. This multidimensional view empowers marketers, insurers, and data-driven enterprises to identify not just who a consumer is—but how they live, shop, and connect.
What truly differentiates Archetype Data’s B2C file is its integration with our Linq360™ B2B2C dataset, which links consumers to the businesses they own or operate. This linkage provides a powerful bridge between professional and personal identity, offering unparalleled insight into small business owners, entrepreneurs, and professionals as both business decision-makers and consumers.
Whether activating audiences across CTV, programmatic display, social, or direct mail, our data seamlessly maps into today’s leading marketing and advertising ecosystems, including LiveRamp, The Trade Desk, and other major platforms.
The B2C Consumer File supports a wide range of applications; audience segmentation, modeling, CRM enrichment, lookalike development, and attribution measurement—across industries such as retail, finance, insurance, media, and healthcare. Whether you’re building a custom audience for a digital campaign, enriching customer records, or analyzing lifestyle trends within a region, Archetype Data’s file provides the scale and precision needed to deliver meaningful results.
Facebook
TwitterGapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.
GIS Data attributes include:
Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.
Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.
Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.
Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.
Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.
Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.
Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.
Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain
Primary Use Cases for GapMaps GIS Data:
Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.
Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)
Network Planning
Customer (Risk) Profiling for insurance/loan approvals
Target Marketing
Competitive Analysis
Market Optimization
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Demographic Analysis of Shopping Behavior: Insights and Recommendations
Dataset Information: The Shopping Mall Customer Segmentation Dataset comprises 15,079 unique entries, featuring Customer ID, age, gender, annual income, and spending score. This dataset assists in understanding customer behavior for strategic marketing planning.
Cleaned Data Details: Data cleaned and standardized, 15,079 unique entries with attributes including - Customer ID, age, gender, annual income, and spending score. Can be used by marketing analysts to produce a better strategy for mall specific marketing.
Challenges Faced: 1. Data Cleaning: Overcoming inconsistencies and missing values required meticulous attention. 2. Statistical Analysis: Interpreting demographic data accurately demanded collaborative effort. 3. Visualization: Crafting informative visuals to convey insights effectively posed design challenges.
Research Topics: 1. Consumer Behavior Analysis: Exploring psychological factors driving purchasing decisions. 2. Market Segmentation Strategies: Investigating effective targeting based on demographic characteristics.
Suggestions for Project Expansion: 1. Incorporate External Data: Integrate social media analytics or geographic data to enrich customer insights. 2. Advanced Analytics Techniques: Explore advanced statistical methods and machine learning algorithms for deeper analysis. 3. Real-Time Monitoring: Develop tools for agile decision-making through continuous customer behavior tracking. This summary outlines the demographic analysis of shopping behavior, highlighting key insights, dataset characteristics, team contributions, challenges, research topics, and suggestions for project expansion. Leveraging these insights can enhance marketing strategies and drive business growth in the retail sector.
References OpenAI. (2022). ChatGPT [Computer software]. Retrieved from https://openai.com/chatgpt. Mustafa, Z. (2022). Shopping Mall Customer Segmentation Data [Data set]. Kaggle. Retrieved from https://www.kaggle.com/datasets/zubairmustafa/shopping-mall-customer-segmentation-data Donkeys. (n.d.). Kaggle Python API [Jupyter Notebook]. Kaggle. Retrieved from https://www.kaggle.com/code/donkeys/kaggle-python-api/notebook Pandas-Datareader. (n.d.). Retrieved from https://pypi.org/project/pandas-datareader/
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Consumer Behavior and Shopping Habits Dataset is a tabular collection of customer demographics, purchase history, product preferences, shopping frequency, and online and offline purchasing behavior.
2) Data Utilization (1) Consumer Behavior and Shopping Habits Dataset has characteristics that: • Each row contains detailed consumer and transaction information such as customer ID, age, gender, purchased goods and categories, purchase amount, region, product attributes (size, color, season), review rating, subscription status, delivery method, discount/promotion usage, payment method, purchase frequency, etc. • Data is organized to cover a variety of variables and purchasing patterns to help segment customers, establish marketing strategies, analyze product preferences, and more. (2) Consumer Behavior and Shopping Habits Dataset can be used to: • Customer Segmentation and Target Marketing: You can analyze demographics and purchasing patterns to define different customer groups and use them to develop customized marketing strategies. • Product and service improvement: Based on purchase history, review ratings, discount/promotional responses, etc., it can be applied to product and service improvements such as identifying popular products, managing inventory, and analyzing promotion effects.
Facebook
TwitterA global database of population segmentation data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date audience targeting data trends for market research, audience targeting, and sales territory mapping.
Self-hosted consumer data curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Consumer Data is standardized, unified, and ready to use.
Use cases for the Global Population Database (Consumer Data Data/Segmentation data)
Ad targeting
B2B Market Intelligence
Customer analytics
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Segmentation data export methodology
Our location data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our Population Databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterLiving Identity™ Asia delivers 401M verified profiles across 7 high-growth Asian markets: Bangladesh, Indonesia, Malaysia, Myanmar, Philippines, Thailand, and Vietnam. This dataset combines identity, lifestyle, demographic, and location signals — ideal for KYC, segmentation, and marketing expansion.
➤ Optimized For: ・Real-time KYC and identity verification ・Location-based audience analytics ・Data-driven market expansion strategy ・Cross-sell/upsell strategy based on lifestyle and affluence ・Customer segmentation and campaign design
➤ Designed For: Marketing & Media Agencies Plan hyper-targeted, region-specific campaigns
Retailers, E-Commerce & Payment Firms Expand across Asia using verified consumer intelligence
Customer Analytics & Intelligence Teams Enrich identity data with lifestyle and location layers
Audience Modeling & AI Teams Train segmentation and targeting models with ground-truth attributes
Financial Services Firms Improve onboarding, scoring, and customer profiling in underbanked markets
➤ Key Highlights: ・401M+ structured profiles across 7 countries ・6 months of refreshed historical activity ・Geo-coded data with lifestyle and demographic detail ・Core identity fields: name, ID, phone, email, address, government ID (where available) ・Delivered securely via on-premise systems
Delivered by 1datapipe®, the global leader in structured identity and lifestyle intelligence. Pricing and additional samples available upon request.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Segments and demographic variables predicting Covid-19 protective behaviors.
Facebook
TwitterSuccess.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.
With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.
Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.
Why Choose Success.ai’s Retail Data for North America?
Verified Contact Data for Precision Outreach
Comprehensive Coverage Across Retail Segments
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Retail Decision-Maker Profiles
Advanced Filters for Precision Targeting
Market Trends and Operational Insights
AI-Driven Enrichment
Strategic Use Cases:
Sales and Lead Generation
Market Research and Consumer Insights
E-Commerce and Digital Strategy Development
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
Facebook
TwitterSuccess.ai’s Audience Targeting Data API empowers your marketing, sales, and product teams with on-demand access to a vast dataset of over 700 million verified global profiles. By delivering rich demographic, firmographic, and behavioral insights, this API enables you to hone in on precisely the right audiences for your campaigns.
Whether you’re exploring new markets, optimizing ABM strategies, or refining personalization techniques, Success.ai’s data ensures your message reaches the most relevant prospects. Backed by our Best Price Guarantee, this solution is indispensable for maximizing engagement, conversion, and ROI in a competitive global environment.
Why Choose Success.ai’s Audience Targeting Data API?
Vast, Verified Global Coverage
AI-Validated Accuracy
Continuous Data Refreshes
Ethical and Compliant
Data Highlights:
Key Features of the Audience Targeting Data API:
Granular Segmentation and Query
Instant Data Enrichment
Seamless Integration and Flexibility
AI-Driven Validation and Reliability
Strategic Use Cases:
Highly Personalized Campaigns
ABM Strategies and Market Expansion
Product Launches and Seasonal Promotions
Enhanced Competitive Advantage
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Data Accuracy with AI Validation
Customizable and Scalable Solutions
Additional...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a comprehensive collection of consumer behavior data that can be used for various market research and statistical analyses. It includes information on purchasing patterns, demographics, product preferences, customer satisfaction, and more, making it ideal for market segmentation, predictive modeling, and understanding customer decision-making processes.
The dataset is designed to help researchers, data scientists, and marketers gain insights into consumer purchasing behavior across a wide range of categories. By analyzing this dataset, users can identify key trends, segment customers, and make data-driven decisions to improve product offerings, marketing strategies, and customer engagement.
Key Features: Customer Demographics: Understand age, income, gender, and education level for better segmentation and targeted marketing. Purchase Behavior: Includes purchase amount, frequency, category, and channel preferences to assess spending patterns. Customer Loyalty: Features like brand loyalty, engagement with ads, and loyalty program membership provide insights into long-term customer retention. Product Feedback: Customer ratings and satisfaction levels allow for analysis of product quality and customer sentiment. Decision-Making: Time spent on product research, time to decision, and purchase intent reflect how customers make purchasing decisions. Influences on Purchase: Factors such as social media influence, discount sensitivity, and return rates are included to analyze how external factors affect purchasing behavior.
Columns Overview: Customer_ID: Unique identifier for each customer. Age: Customer's age (integer). Gender: Customer's gender (categorical: Male, Female, Non-binary, Other). Income_Level: Customer's income level (categorical: Low, Middle, High). Marital_Status: Customer's marital status (categorical: Single, Married, Divorced, Widowed). Education_Level: Highest level of education completed (categorical: High School, Bachelor's, Master's, Doctorate). Occupation: Customer's occupation (categorical: Various job titles). Location: Customer's location (city, region, or country). Purchase_Category: Category of purchased products (e.g., Electronics, Clothing, Groceries). Purchase_Amount: Amount spent during the purchase (decimal). Frequency_of_Purchase: Number of purchases made per month (integer). Purchase_Channel: The purchase method (categorical: Online, In-Store, Mixed). Brand_Loyalty: Loyalty to brands (1-5 scale). Product_Rating: Rating given by the customer to a purchased product (1-5 scale). Time_Spent_on_Product_Research: Time spent researching a product (integer, hours or minutes). Social_Media_Influence: Influence of social media on purchasing decision (categorical: High, Medium, Low, None). Discount_Sensitivity: Sensitivity to discounts (categorical: Very Sensitive, Somewhat Sensitive, Not Sensitive). Return_Rate: Percentage of products returned (decimal). Customer_Satisfaction: Overall satisfaction with the purchase (1-10 scale). Engagement_with_Ads: Engagement level with advertisements (categorical: High, Medium, Low, None). Device_Used_for_Shopping: Device used for shopping (categorical: Smartphone, Desktop, Tablet). Payment_Method: Method of payment used for the purchase (categorical: Credit Card, Debit Card, PayPal, Cash, Other). Time_of_Purchase: Timestamp of when the purchase was made (date/time). Discount_Used: Whether the customer used a discount (Boolean: True/False). Customer_Loyalty_Program_Member: Whether the customer is part of a loyalty program (Boolean: True/False). Purchase_Intent: The intent behind the purchase (categorical: Impulsive, Planned, Need-based, Wants-based). Shipping_Preference: Shipping preference (categorical: Standard, Express, No Preference). Payment_Frequency: Frequency of payment (categorical: One-time, Subscription, Installments). Time_to_Decision: Time taken from consideration to actual purchase (in days).
Use Cases: Market Segmentation: Segment customers based on demographics, preferences, and behavior. Predictive Analytics: Use data to predict customer spending habits, loyalty, and product preferences. Customer Profiling: Build detailed profiles of different consumer segments based on purchase behavior, social media influence, and decision-making patterns. Retail and E-commerce Insights: Analyze purchase channels, payment methods, and shipping preferences to optimize marketing and sales strategies.
Target Audience: Data scientists and analysts looking for consumer behavior data. Marketers interested in improving customer segmentation and targeting. Researchers are exploring factors influencing consumer decisions and preferences. Companies aiming to improve customer experience and increase sales through data-driven decisions.
This dataset is available in CSV format for easy integration into data analysis tools and platforms such as Python, R, and Excel.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive customer data suitable for segmentation analysis. It includes anonymized demographic, transactional, and behavioral attributes, allowing for detailed exploration of customer segments. Leveraging this dataset, marketers, data scientists, and business analysts can uncover valuable insights to optimize targeted marketing strategies and enhance customer engagement. Whether you're looking to understand customer behavior or improve campaign effectiveness, this dataset offers a rich resource for actionable insights and informed decision-making.
Anonymized demographic, transactional, and behavioral data. Suitable for customer segmentation analysis. Opportunities to optimize targeted marketing strategies. Valuable insights for improving campaign effectiveness. Ideal for marketers, data scientists, and business analysts.
Segmenting customers based on demographic attributes. Analyzing purchase behavior to identify high-value customer segments. Optimizing marketing campaigns for targeted engagement. Understanding customer preferences and tailoring product offerings accordingly. Evaluating the effectiveness of marketing strategies and iterating for improvement. Explore this dataset to unlock actionable insights and drive success in your marketing initiatives!
Facebook
TwitterSuccess.ai’s Consumer Sentiment Data offers businesses unparalleled insights into global audience attitudes, preferences, and emotional triggers. Sourced from continuous analysis of consumer behaviors, conversations, and feedback, this dataset includes psychographic profiles, interest data, and sentiment trends that help marketers, product teams, and strategists better understand their target customers. Whether you’re exploring a new market, refining your brand message, or enhancing product offerings, Success.ai ensures your consumer intelligence efforts are guided by timely, accurate, and context-rich data.
Why Choose Success.ai’s Consumer Sentiment Data?
Comprehensive Audience Insights
Global Reach Across Industries and Demographics
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Granular Segmentation
Contextual Sentiment Analysis
AI-Driven Enrichment
Strategic Use Cases:
Marketing and Campaign Optimization
Product Development and Innovation
Brand Management and Positioning
Competitive Analysis and Market Entry
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Data Accuracy with AI Validation
Customizable and Scalable Solutions
APIs for Enhanced Functionality:
Data Enrichment API
Lead Generation API
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Overview: Customer Segmentation Using K-Means Clustering
Introduction In this project, I analysed customer data from a retail store to identify distinct customer segments. The dataset includes key attributes such as age, city, and total sales of the customers. By leveraging K-Means clustering, an unsupervised machine learning technique, I aim to group customers based on their age and sales metrics. These insights will enable the creation of targeted marketing campaigns tailored to the specific needs and behaviours of each customer segment.
Objectives - Cluster Customers: Use K-Means clustering to group customers based on age and total sales. - Analyse Segments: Examine the characteristics of each customer segment. - Targeted Marketing: Develop strategies for personalized marketing campaigns targeting each identified customer group.
Data Description The dataset comprises:
Methodology - Data Preprocessing: Clean and preprocess the data to handle any missing or inconsistent entries. - Feature Selection: Focus on age and total sales as primary features for clustering. - K-Means Clustering: Apply the K-Means algorithm to identify distinct customer segments. - Cluster Analysis: Analyse the resulting clusters to understand the demographic and sales characteristics of each group. - Marketing Strategy Development: Create targeted marketing strategies for each customer segment to enhance engagement and sales.
Expected Outcomes - Customer Segments: Clear identification of customer groups based on age and purchasing behaviour. - Insights for Marketing: Detailed understanding of each segment to inform targeted marketing efforts. - Business Impact: Enhanced ability to tailor marketing campaigns, potentially leading to increased customer satisfaction and sales.
By clustering customers based on age and total sales, this project aims to provide actionable insights for personalized marketing, ultimately driving better customer engagement and higher sales for the retail store.