49 datasets found
  1. d

    Mayor’s Office of Operations: Demographic Survey

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Mayor’s Office of Operations: Demographic Survey [Dataset]. https://catalog.data.gov/dataset/mayors-office-of-operations-demographic-survey
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated

  2. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  3. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  4. o

    Armenia - Demographic and Health Survey 2000 - Dataset - Data Catalog...

    • data.opendata.am
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Armenia - Demographic and Health Survey 2000 - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0047363
    Explore at:
    Dataset updated
    Jul 7, 2023
    Area covered
    Armenia
    Description

    The Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.

  5. N

    Lake View, AR Age Group Population Dataset: A complete breakdown of Lake...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Lake View, AR Age Group Population Dataset: A complete breakdown of Lake View age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/70965026-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    AR, Lake View
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Lake View population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Lake View. The dataset can be utilized to understand the population distribution of Lake View by age. For example, using this dataset, we can identify the largest age group in Lake View.

    Key observations

    The largest age group in Lake View, AR was for the group of age 50-54 years with a population of 53 (11.57%), according to the 2021 American Community Survey. At the same time, the smallest age group in Lake View, AR was the 35-39 years with a population of 7 (1.53%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Lake View is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Lake View total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lake View Population by Age. You can refer the same here

  6. Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access...

    • beta.ukdataservice.ac.uk
    Updated 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2016). Annual Population Survey: Well-Being, April 2011 - March 2015: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-7961-1
    Explore at:
    Dataset updated
    2016
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Social Survey Division Office For National Statistics
    Description

    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).

    The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    APS Well-Being data
    Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.

    As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.

    Secure Access APS Well-Being data
    Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:

    • geography, including:
      • Postcodes
      • Census Area Statistics (CAS) Wards
      • Census Output Areas
      • Nomenclature of Units for Territorial Statistics (NUTS) level 2 and 3 areas
      • Lower and Middle Layer Super Output Areas
      • Travel to Work Areas
      • Unitary authority / Local Authority District of place of work (main job)
      • region of place of work for first and second jobs
    • qualifications, education and training including level of highest qualification, qualifications from Government schemes, qualifications related to work, qualifications from school, qualifications from university of college and qualifications gained from outside the UK
    • detailed ethnic group for Scottish respondents
    • detailed religious denomination for Northern Irish respondents
    • length health problem has limited activity
    • learning difficulty or learning disability
    • occupation in apprenticeship or second job
    • number of bedrooms
    • number of dependent children in household aged under 19
    Prospective users of the Secure Access version of the APS Well-Being will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access data users must also complete face-to-face training and agree to the Secure Access User Agreement and Licence Compliance Policy (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access (or SL) version. Further details and links to all APS studies available from the UK Data Archive can be found via the APS Key Data series webpage.

    APS Well-Being Datasets: Information, July 2016
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Users should no longer use the bespoke well-being datasets (SNs 6994, 6999, 7091, 7092, 7364, 7365, 7565, 7566 and 7961, but should now use the variables included on the April-March APS person datasets instead. Further information on the transition can be found on the Personal well-being in the UK: 2015 to 2016

    Documentation and coding frames
    The APS is compiled from variables present in the LFS. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation (e.g. coding frames for education, industrial and geographic variables, which are held in LFS User Guide Vol.5, Classifications), users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    May 2018 Update
    Due to a change in the Travel-to-Work Area coding structure from 2001 to 2011, the variable TTWA9D has been relabelled in the pooled data file for 2012-2015.

  7. Annual Population Survey Three-Year Pooled Dataset, January 2021 - December...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2024). Annual Population Survey Three-Year Pooled Dataset, January 2021 - December 2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9291-1
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Office For National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.


  8. l

    The STAMINA study: quantitative dataset for survey 1

    • repository.lboro.ac.uk
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed-Kanashiro (2025). The STAMINA study: quantitative dataset for survey 1 [Dataset]. http://doi.org/10.17028/rd.lboro.18785666.v1
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Loughborough University
    Authors
    Emily Rousham; Rebecca Pradeilles; Rossina Pareja; Hilary Creed-Kanashiro
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The STAMINA study examined the nutritional risks of low-income peri-urban mothers, infants and young children, and households in Peru during the COVID-19 pandemic. The study was designed to capture information through three, repeated cross-sectional surveys at approximately 6 month intervals over an 18 month period, starting in December 2020. The surveys were carried out by telephone in November-December 2020, July-August 2021 and in February-April 2022. The third survey took place over a longer period to allow for a household visit after the telephone interview.The study areas were Manchay (Lima) and Huánuco district in the Andean highlands (~ 1900m above sea level).In each study area, we purposively selected the principal health centre and one subsidiary health centre. Peri-urban communities under the jurisdiction of these health centres were then selected to participate. Systematic random sampling was employed with quotas for IYC age (6-11, 12-17 and 18-23 months) to recruit a target sample size of 250 mother-infant pairs for each survey. .Data collected included: household socio-demographic characteristics; infant and young child feeding practices (IYCF), child and maternal qualitative 24-hour dietary recalls/7 day food frequency questionnaires, household food insecurity experience measured using the validated Food Insecurity Experience Scale (FIES) survey module (Cafiero, Viviani, & Nord, 2018), and maternal mental health.In addition, questions that assessed the impact of COVID-19 on households including changes in employment status, adaptations to finance, sources of financial support, household food insecurity experience as well as access to, and uptake of, well-child clinics and vaccination health services were included.This folder includes the dataset and dictionary of variables for survey 1 (English only).The survey questionnaire for survey 1 is available at 10.17028/rd.lboro.16825507.

  9. w

    Trinidad and Tobago - Demographic and Health Survey 1987 - Dataset -...

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Trinidad and Tobago - Demographic and Health Survey 1987 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/trinidad-and-tobago-demographic-and-health-survey-1987
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Trinidad and Tobago
    Description

    The Trinidad and Tobago DHS surveya national-level self-weighting random sample surveywas funded by the United States Agency for International Development (US/AID) and executed by the Family Planning Association of Trinidad and Tobago (FPATT). Technical assisstance was provided by the Demographic and Health Surveys Program at the Institute for Resource Development (IRD), a subsidiary of Westinghouse located in Columbia, Maryland. The sampling frame for the TTDHS was the Continuous Sample Survey of Population (CSSP), an ongoing survey conducted by the Central Statistical Office based on the 1980 Population and Housing Census. The TTDHS used a household schedule to collect information on residents of selected households, and to identify women eligible for the individual questionnaire. The individual questionnaire was based on DHS's Model "A" Questionnaire for High Contraceptive Prevalence countries, which was modified for use in Trinidad and Tobago. It covered four main areas: (1) background information on the respondent, her partner and marital status, (2) fertility and fertility preferences, (3) contraception, and (4) the health of children. The short term objective of the Trinidad and Tobago Demographic and Health Survey (TTDHS) is to collect and analyse data on the demographic characteristics of women in the reproductive years, and the health status of their young children. Policymakers and programme managers in public and private agencies will be able to utilize the data in designing and administering programmes. The long term objective of the project is to enhance the ability of organisations involved in the TTDHS to undertake surveys of excellent technical quality.

  10. Data from: Survey: Open Science in Higher Education

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel (2024). Survey: Open Science in Higher Education [Dataset]. http://doi.org/10.5281/zenodo.400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel; Tamara Heck; Ina Blümel; Lambert Heller; Athanasios Mazarakis; Isabella Peters; Ansgar Scherp; Luzian Weisel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    • Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.
    • Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.
    • Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:

    • Natural Sciences
    • Arts and Humanities or Social Sciences
    • Economics
    • Law
    • Medicine
    • Computer Sciences, Engineering, Technics
    • Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:

    • Professor
    • Special education teacher
    • Academic/scientific assistant or research fellow (research and teaching)
    • Academic staff (teaching)
    • Student assistant
    • Other

    We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.

  11. f

    Is Demography Destiny? Application of Machine Learning Techniques to...

    • plos.figshare.com
    • figshare.com
    docx
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Luo; Thin Nguyen; Melanie Nichols; Truyen Tran; Santu Rana; Sunil Gupta; Dinh Phung; Svetha Venkatesh; Steve Allender (2023). Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset [Dataset]. http://doi.org/10.1371/journal.pone.0125602
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Wei Luo; Thin Nguyen; Melanie Nichols; Truyen Tran; Santu Rana; Sunil Gupta; Dinh Phung; Svetha Venkatesh; Steve Allender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  12. Annual Population Survey Household Dataset, January - December, 2023

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2024). Annual Population Survey Household Dataset, January - December, 2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9312-1
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Office For National Statistics
    Description

    The Annual Population Survey (APS) household datasets are produced annually and are available from 2004 (Special Licence) and 2006 (End User Licence). They allow production of family and household labour market statistics at local areas and for small sub-groups of the population across the UK. The household data comprise key variables from the Labour Force Survey (LFS) and the APS 'person' datasets. The APS household datasets include all the variables on the LFS and APS person datasets, except for the income variables. They also include key family and household-level derived variables. These variables allow for an analysis of the combined economic activity status of the family or household. In addition, they also include more detailed geographical, industry, occupation, health and age variables.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:

    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address
    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

  13. Demographic and Health Survey 2017 - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Indonesia (BPS) (2019). Demographic and Health Survey 2017 - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3477
    Explore at:
    Dataset updated
    Jul 12, 2019
    Dataset provided by
    Statistics Indonesiahttp://www.bps.go.id/
    National Population and Family Planning Board (BKKBN)
    Ministry of Health (Kemenkes)
    Time period covered
    2017
    Area covered
    Indonesia
    Description

    Abstract

    The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).

    The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.

    Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.

    For further details on sample design, see Appendix B of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.

    Cleaning operations

    All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.

    Response rate

    Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.

    In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix D of the survey final report.

  14. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  15. Annual Population Survey, July 2023 - June 2024

    • beta.ukdataservice.ac.uk
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Annual Population Survey, July 2023 - June 2024 [Dataset]. http://doi.org/10.5255/ukda-sn-9307-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Office for National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Latest edition information

    For the second edition (June 2025) updated versions of the weighting variables NPWT22, PIWTA22 and PWTA22 were added to the study. The reason for the adjustment is an issue ONS identified during a recent review of the weighting method, related to the application of the non-response adjustment for boost cases. In addition, the variable YLESS20 was also updated, and DIFFHR6 was replaced with DIFFHR20. Previously missing imputed values for 'IOUTCOME=6' cases have been added.

  16. d

    ACS 5-Year Demographic Characteristics DC Census Tract

    • catalog.data.gov
    • opdatahub.dc.gov
    • +4more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC Census Tract [Dataset]. https://catalog.data.gov/dataset/acs-5-year-demographic-characteristics-dc-census-tract
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  17. H

    National Health and Nutrition Examination Survey (NHANES)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). National Health and Nutrition Examination Survey (NHANES) [Dataset]. http://doi.org/10.7910/DVN/IMWQPJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the national health and nutrition examination survey (nhanes) with r nhanes is this fascinating survey where doctors and dentists accompany survey interviewers in a little mobile medical center that drives around the country. while the survey folks are interviewing people, the medical professionals administer laboratory tests and conduct a real doctor's examination. the b lood work and medical exam allow researchers like you and me to answer tough questions like, "how many people have diabetes but don't know they have diabetes?" conducting the lab tests and the physical isn't cheap, so a new nhanes data set becomes available once every two years and only includes about twelve thousand respondents. since the number of respondents is so small, analysts often pool multiple years of data together. the replication scripts below give a few different examples of how multiple years of data can be pooled with r. the survey gets conducted by the centers for disease control and prevention (cdc), and generalizes to the united states non-institutional, non-active duty military population. most of the data tables produced by the cdc include only a small number of variables, so importation with the foreign package's read.xport function is pretty straightforward. but that makes merging the appropriate data sets trickier, since it might not be clear what to pull for which variables. for every analysis, start with the table with 'demo' in the name -- this file includes basic demographics, weighting, and complex sample survey design variables. since it's quick to download the files directly from the cdc's ftp site, there's no massive ftp download automation script. this new github repository co ntains five scripts: 2009-2010 interview only - download and analyze.R download, import, save the demographics and health insurance files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the interview weights run a series of pretty generic analyses on the health insurance ques tions 2009-2010 interview plus laboratory - download and analyze.R download, import, save the demographics and cholesterol files onto your local computer load both files, limit them to the variables needed for the analysis, merge them together perform a few example variable recodes create the complex sample survey object, using the mobile examination component (mec) weights perform a direct-method age-adjustment and matc h figure 1 of this cdc cholesterol brief replicate 2005-2008 pooled cdc oral examination figure.R download, import, save, pool, recode, create a survey object, run some basic analyses replicate figure 3 from this cdc oral health databrief - the whole barplot replicate cdc publications.R download, import, save, pool, merge, and recode the demographics file plus cholesterol laboratory, blood pressure questionnaire, and blood pressure laboratory files match the cdc's example sas and sudaan syntax file's output for descriptive means match the cdc's example sas and sudaan synta x file's output for descriptive proportions match the cdc's example sas and sudaan syntax file's output for descriptive percentiles replicate human exposure to chemicals report.R (user-contributed) download, import, save, pool, merge, and recode the demographics file plus urinary bisphenol a (bpa) laboratory files log-transform some of the columns to calculate the geometric means and quantiles match the 2007-2008 statistics shown on pdf page 21 of the cdc's fourth edition of the report click here to view these five scripts for more detail about the national health and nutrition examination survey (nhanes), visit: the cdc's nhanes homepage the national cancer institute's page of nhanes web tutorials notes: nhanes includes interview-only weights and interview + mobile examination component (mec) weights. if you o nly use questions from the basic interview in your analysis, use the interview-only weights (the sample size is a bit larger). i haven't really figured out a use for the interview-only weights -- nhanes draws most of its power from the combination of the interview and the mobile examination component variables. if you're only using variables from the interview, see if you can use a data set with a larger sample size like the current population (cps), national health interview survey (nhis), or medical expenditure panel survey (meps) instead. confidential to sas, spss, stata, sudaan users: why are you still riding around on a donkey after we've invented the internal combustion engine? time to transition to r. :D

  18. R

    Data from: IZA Evaluation Dataset Survey

    • ed.iza.org
    • dataverse.iza.org
    docx, zip
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Arni; Marco Caliendo; Steffen Künn; Klaus F. Zimmermann; Patrick Arni; Marco Caliendo; Steffen Künn; Klaus F. Zimmermann (2023). IZA Evaluation Dataset Survey [Dataset]. http://doi.org/10.15185/izadp.7971.1
    Explore at:
    docx(44055), zip(16669702)Available download formats
    Dataset updated
    Oct 20, 2023
    Dataset provided by
    Research Data Center of IZA (IDSC)
    Authors
    Patrick Arni; Marco Caliendo; Steffen Künn; Klaus F. Zimmermann; Patrick Arni; Marco Caliendo; Steffen Künn; Klaus F. Zimmermann
    License

    https://www.iza.org/wc/dataverse/IIL-1.0.pdfhttps://www.iza.org/wc/dataverse/IIL-1.0.pdf

    Time period covered
    2007 - 2011
    Area covered
    Federal States, Germany
    Description

    The IZA Evaluation Dataset Survey (IZA ED) was developed in order to obtain reliable longitudinal estimates for the impact of Active Labor Market Policies (ALMP). Moreover, it is suitable for studying the processes of job search and labor market reintegration. The data allow analyzing dynamics with respect to a rich set of individual and labor market characteristics. It covers the initial period of unemployment as well as long-term outcomes, for a total period of up to 3 years after unemployment entry. A longitudinal questionnaire records monthly labor market activities and their duration in detail for the mentioned period. These activities are, for example, employment, unemployment, ALMP, other training etc. Available information covers employment status, occupation, sector, and related earnings, hours, unemployment benefits or other transfer payments. A cross-sectional questionnaire contains all basic information including the process of entering into unemployment, and demographics. The entry into unemployment describes detailed job search behavior such as search intensity, search channels and the role of the Employment Agency. Moreover, reservation wages and individual expectations about leaving unemployment or participating in ALMP programs are recorded. The available demographic information covers employment status, occupation and sector, as well as specifics about citizenship and ethnic background, educational levels, number and age of children, household structure and income, family background, health status, and workplace as well as place of residence regions. The survey provides as well detailed information about the treatment by the unemployment insurance authorities, imposed labor market policies, benefit receipt and sanctions. The survey focuses additionally on individual characteristics and behavior. Such co-variates of individuals comprise social networks, ethnic and migration background, relations and identity, personality traits, cognitive and non-cognitive skills, life and job satisfaction, risky behavior, attitudes and preferences. The main advantages of the IZA ED are the large sample size of unemployed individuals, the accuracy of employment histories, the innovative and rich set of individual co-variates and the fact that the survey measures important characteristics shortly after entry into unemployment.

  19. N

    Los Angeles, CA Age Group Population Dataset: A complete breakdown of Los...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Los Angeles, CA Age Group Population Dataset: A complete breakdown of Los Angeles age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/70a8e4d3-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Los Angeles, California
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Los Angeles population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Los Angeles. The dataset can be utilized to understand the population distribution of Los Angeles by age. For example, using this dataset, we can identify the largest age group in Los Angeles.

    Key observations

    The largest age group in Los Angeles, CA was for the group of age 25-29 years with a population of 353,499 (9.06%), according to the 2021 American Community Survey. At the same time, the smallest age group in Los Angeles, CA was the 80-84 years with a population of 57,812 (1.48%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Los Angeles is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Los Angeles total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Los Angeles Population by Age. You can refer the same here

  20. w

    Demographic and Health Survey 2018 - Zambia

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Feb 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2020). Demographic and Health Survey 2018 - Zambia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3597
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    Zambia Statistics Agency (ZamStats)
    Ministry of Health
    Time period covered
    2018 - 2019
    Area covered
    Zambia
    Description

    Abstract

    The primary objective of the 2018 ZDHS was to provide up-to-date estimates of basic demographic and health indicators. Specifically, the ZDHS collected information on: - Fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; and gender, nutrition, and awareness regarding HIV/AIDS and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) - Ownership and use of mosquito nets as part of the national malaria eradication programmes - Health-related matters such as breastfeeding, maternal and childcare (antenatal, delivery, and postnatal), children’s immunisations, and childhood diseases - Anaemia prevalence among women age 15-49 and children age 6-59 months - Nutritional status of children under age 5 (via weight and height measurements) - HIV prevalence among men age 15-59 and women age 15-49 and behavioural risk factors related to HIV - Assessment of situation regarding violence against women

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49, all men age 15-59, and all children age 0-5 years who are usual members of the selected households or who spent the night before the survey in the selected households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 ZDHS is the Census of Population and Housing (CPH) of the Republic of Zambia, conducted in 2010 by ZamStats. Zambia is divided into 10 provinces. Each province is subdivided into districts, each district into constituencies, and each constituency into wards. In addition to these administrative units, during the 2010 CPH each ward was divided into convenient areas called census supervisory areas (CSAs), and in turn each CSA was divided into enumeration areas (EAs). An enumeration area is a geographical area assigned to an enumerator for the purpose of conducting a census count; according to the Zambian census frame, each EA consists of an average of 110 households.

    The current version of the EA frame for the 2010 CPH was updated to accommodate some changes in districts and constituencies that occurred between 2010 and 2017. The list of EAs incorporates census information on households and population counts. Each EA has a cartographic map delineating its boundaries, with identification information and a measure of size, which is the number of residential households enumerated in the 2010 CPH. This list of EAs was used as the sampling frame for the 2018 ZDHS.

    The 2018 ZDHS followed a stratified two-stage sample design. The first stage involved selecting sample points (clusters) consisting of EAs. EAs were selected with a probability proportional to their size within each sampling stratum. A total of 545 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters. During the listing, an average of 133 households were found in each cluster, from which a fixed number of 25 households were selected through an equal probability systematic selection process, to obtain a total sample size of 13,625 households. Results from this sample are representative at the national, urban and rural, and provincial levels.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the 2018 ZDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s Model Questionnaires, were adapted to reflect the population and health issues relevant to Zambia. Input on questionnaire content was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international cooperating partners. After all questionnaires were finalised in English, they were translated into seven local languages: Bemba, Kaonde, Lozi, Lunda, Luvale, Nyanja, and Tonga. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    All electronic data files were transferred via a secure internet file streaming system to the ZamStats central office in Lusaka, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two IT specialists and one secondary editor who took part in the main fieldwork training; they were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July 2018 and completed in March 2019.

    Response rate

    Of the 13,595 households in the sample, 12,943 were occupied. Of these occupied households, 12,831 were successfully interviewed, yielding a response rate of 99%.

    In the interviewed households, 14,189 women age 15-49 were identified as eligible for individual interviews; 13,683 women were interviewed, yielding a response rate of 96% (the same rate achieved in the 2013-14 survey). A total of 13,251 men were eligible for individual interviews; 12,132 of these men were interviewed, producing a response rate of 92% (a 1 percentage point increase from the previous survey).

    Of the households successfully interviewed, 12,505 were interviewed in 2018 and 326 in 2019. As the large majority of households were interviewed in 2018 and the year for reference indicators is 2018.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Zambia Demographic and Health Survey (ZDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 ZDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 ZDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Completeness of information on siblings - Sibship size and sex ratio of siblings - Height and weight data completeness and quality for children - Number of enumeration areas completed by month, according to province, Zambia DHS 2018

    Note: Data quality tables are presented in APPENDIX C of the report.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2025). Mayor’s Office of Operations: Demographic Survey [Dataset]. https://catalog.data.gov/dataset/mayors-office-of-operations-demographic-survey

Mayor’s Office of Operations: Demographic Survey

Explore at:
Dataset updated
Jul 19, 2025
Dataset provided by
data.cityofnewyork.us
Description

Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated

Search
Clear search
Close search
Google apps
Main menu