Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterThe National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999, the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements which were designed to meet current and emerging concerns. The sample for the survey is selected to represent the U.S. population of all ages. Many of the NHANES 2007-2008 questions also were asked in NHANES II 1976-1980, Hispanic HANES 1982-1984, NHANES III 1988-1994, and NHANES 1999-2006. New questions were added to the survey based on recommendations from survey collaborators, NCHS staff, and other interagency work groups. Estimates for previously undiagnosed conditions, as well as those known to and reported by survey respondents, are produced through the survey.
In the 2005-2006 wave, the NHANES includes over 100 datasets. Most have been combined into three datasets for convenience. Each starts with the Demographic dataset and includes datasets of a specific type.
1. National Health and Nutrition Examination Survey (NHANES), Demographic & Examination Data, 2005-2006 (The base of the Demographic dataset + all data from medical examinations).
2. National Health and Nutrition Examination Survey (NHANES), Demographic & Laboratory Data, 2005-2006 (The base of the Demographic dataset + all data from medical laboratories).
3. National Health and Nutrition Examination Survey (NHANES), Demographic & Questionnaire Data, 2005-2006 (The base of the Demographic dataset + all data from questionnaires)
Not all files from the 2005-2006 wave are included. This is for two reasons, both of which related to the merging variable (SEQN). For a subset of the files, SEQN is not a unique identifier for cases (i.e., some respondents have multiple cases) or SEQN is not in the file at all. The following datasets from this wave of the NHANES are not included in these three files and can be found individually from the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website at the CDC:
Examination: Dietary Interview (Individual Foods -- First Day)
Examination: Dietary Interview (Individual Foods -- Second Day)
Examination: Food Frequency Questionnaire -- DietCalc Output
Examination: Physical Activity Monitor
Questionnaire: Dietary Supplement Use -- Ingredient Information
Questionnaire: Dietary Supplement Use -- Supplement Blend
Questionnaire: Dietary Supplement Use -- Supplement Information
Questionnaire: Dietary Supplement Use -- Drug Information
Questionnaire: Dietary Supplement Use -- Participants Use of Supplement
Questionnaire: Physical Activity Individual Activity File
Questionnaire: Prescription Medications
Variable SEQN is included for merging files within the waves. All data files should be sorted by SEQN.
Additional details of the design and content of each survey are available at the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website.
Facebook
TwitterThe City of Norfolk is committed to using data to inform decisions and allocate resources. An important source of data is input from residents about their priorities and satisfaction with the services we provide. Norfolk last conducted a citywide survey of residents in 2022.
To provide up-to-date information regarding resident priorities and satisfaction, Norfolk contracted with ETC Institute to conduct a survey of residents. This survey was conducted in May and June 2024; surveys were sent via the U.S. Postal Service, and respondents were given the choice of responding by mail or online. This survey represents a random and statistically valid sample of residents from across the city, including each Ward. ETC Institute monitored responses and followed up to ensure all sections of the city were represented. Additionally, an opportunity was provided for residents not included in the random sample to take the survey and express their views. This dataset includes all random sample survey data including demographic information; it excludes free-form comments to protect privacy. It is grouped by Question Category, Question, Response, Demographic Question, and Demographic Question Response. This dataset will be updated every two years.
Facebook
TwitterParticipants could select multiple demographic groups for questions asking which country they grew up in, which country they reside in, their gender identity, sexual orientation, race and ethnicity, field of study, and professional affiliation. Because participants could select more than 1 response for each of these questions, totals for some demographic questions sum to more than 100%. Sample sizes vary by demographic because not all participants responded to each demographic question. Please refer to the Methods section for more information about how participant demographic data were analyzed.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Science in (Higher) Education – data of the February 2017 survey
This data set contains:
Survey structure
The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).
Demographic questions
Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:
The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:
We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.
Remark on OER question
Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.
Data collection
The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.
The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.
Data clearance
We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.
Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).
References
Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.
First results of the survey are presented in the poster:
Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561
Contact:
Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.
[1] https://www.limesurvey.org
[2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This documentation includes the instruction pages presented to annotators, along with the demographic questionnaire and a sample annotation page (1 of 80) from our annotation task interface.
Facebook
TwitterA random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The STAMINA study examined the nutritional risks of low-income peri-urban mothers, infants and young children (IYC), and households in Peru during the COVID-19 pandemic. The study was designed to capture information through three, repeated cross-sectional surveys at approximately 6 month intervals over an 18 month period, starting in December 2020. The surveys were carried out by telephone in November-December 2020, July-August 2021 and in February-April 2022. The third survey took place over a longer period to allow for a household visit after the telephone interview.The study areas were Manchay (Lima) and Huánuco district in the Andean highlands (~ 1900m above sea level).In each study area, we purposively selected the principal health centre and one subsidiary health centre. Peri-urban communities under the jurisdiction of these health centres were then selected to participate. Systematic random sampling was employed with quotas for IYC age (6-11, 12-17 and 18-23 months) to recruit a target sample size of 250 mother-infant pairs for each survey.Data collected included: household socio-demographic characteristics; infant and young child feeding practices (IYCF), child and maternal qualitative 24-hour dietary recalls/7 day food frequency questionnaires, household food insecurity experience measured using the validated Food Insecurity Experience Scale (FIES) survey module (Cafiero, Viviani, & Nord, 2018), and maternal mental health.In addition, questions that assessed the impact of COVID-19 on households including changes in employment status, adaptations to finance, sources of financial support, household food insecurity experience as well as access to, and uptake of, well-child clinics and vaccination health services were included.This folder includes the questionnaire for survey 3 in both English and Spanish languages.The corresponding dataset and dictionary of variables for survey 3 are available at 10.17028/rd.lboro.21741014
Facebook
TwitterBoth waves of the panel survey were conducted in the days, weeks, and months leading up to the 2016 U.S. presidential election. The first wave of the survey was conducted between September 27 and October 13, 2016, while the second wave was conducted between October 27 and November 8, 2016.
In the first wave, a total of 1,623 responses were recorded, making for a response rate of about 16%. In the second wave, a total of 637 of the original interviewees completed the survey, making for a retention rate of about 39%.
This dataset includes only those respondents who completed both waves of the survey as well as those who correctly answered an attention check question embedded within each wave of the survey.
In addition to standard demographic questions, the panel survey included questions regarding media use, political preferences, behaviors and beliefs.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/29646/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/29646/terms
This data collection is comprised of responses from the March and April installments of the 2008 Current Population Survey (CPS). Both the March and April surveys used two sets of questions, the basic CPS and a separate supplement for each month.The CPS, administered monthly, is a labor force survey providing current estimates of the economic status and activities of the population of the United States. Specifically, the CPS provides estimates of total employment (both farm and nonfarm), nonfarm self-employed persons, domestics, and unpaid helpers in nonfarm family enterprises, wage and salaried employees, and estimates of total unemployment.In addition to the basic CPS questions, respondents were asked questions from the March supplement, known as the Annual Social and Economic (ASEC) supplement. The ASEC provides supplemental data on work experience, income, noncash benefits, and migration. Comprehensive work experience information was given on the employment status, occupation, and industry of persons 15 years old and older. Additional data for persons 15 years old and older are available concerning weeks worked and hours per week worked, reason not working full time, total income and income components, and place of residence on March 1, 2007. The March supplement also contains data covering nine noncash income sources: food stamps, school lunch program, employer-provided group health insurance plan, employer-provided pension plan, personal health insurance, Medicaid, Medicare, CHAMPUS or military health care, and energy assistance. Questions covering training and assistance received under welfare reform programs, such as job readiness training, child care services, or job skill training were also asked in the March supplement.The April supplement, sponsored by the Department of Health and Human Services, queried respondents on the economic situation of persons and families for the previous year. Moreover, all household members 15 years of age and older that are a biological parent of children in the household that have an absent parent were asked detailed questions about child support and alimony. Information regarding child support was collected to determine the size and distribution of the population with children affected by divorce or separation, or other relationship status change. Moreover, the data were collected to better understand the characteristics of persons requiring child support, and to help develop and maintain programs designed to assist in obtaining child support. These data highlight alimony and child support arrangements made at the time of separation or divorce, amount of payments actually received, and value and type of any property settlement.The April supplement data were matched to March supplement data for households that were in the sample in both March and April 2008. In March 2008, there were 4,522 household members eligible, of which 1,431 required imputation of child support data. When matching the March 2008 and April 2008 data sets, there were 170 eligible people on the March file that did not match to people on the April file. Child support data for these 170 people were imputed. The remaining 1,261 imputed cases were due to nonresponse to the child support questions. Demographic variables include age, sex, race, Hispanic origin, marital status, veteran status, educational attainment, occupation, and income. Data on employment and income refer to the preceding year, although other demographic data refer to the time at which the survey was administered.
Facebook
TwitterThe Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.
Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.
The dataset currently includes responses from up to and including 2025.
Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:
January: Mood of the Nation
February: World Affairs
March: Environment
April: Economy and Finance
May: Values and Beliefs
June: Minority Rights and Relations (discontinued after 2016)
July: Consumption Habits
August: Work and Education
September: Governance
October: Crime
November: Health
December: Lifestyle (conducted 2001-2008)
The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.
Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Dynata. Gallup chooses landline respondents at random within each household based on which member had the next birthday. As of June 2023, each sample of national adults includes a minimum quota of 80% cellphone respondents and 20% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.
Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey (conducted periodically between 2001 and 2021) were significantly larger because Gallup oversampled Black and Hispanic adults to allow for reliable estimates among these key subgroups.
Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).
Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.
The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.
For more information about what survey questions were asked over time, see the Supporting Files.
Data access is required to view this section.
Facebook
TwitterThe National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999, the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements designed to meet current and emerging concerns. The sample for the survey is selected to represent the U.S. population of all ages. Many of the NHANES 2001-2002 questions also were asked in NHANES II 1976-1980, Hispanic HANES 1982-1984, NHANES III 1988-1994. New questions were added to the survey based on recommendations from survey collaborators, NCHS staff, and other interagency work groups.
In the 2001-2002 wave, the NHANES includes more than 100 datasets. Most have been combined into three datasets for convenience. Each starts with the demographic dataset and includes datasets of a specific type.
1. National Health and Nutrition Examination Survey (NHANES), Demographic & Examination Data, 2001-2002 (The base of the Demographic dataset + all data from medical examinations).
2. National Health and Nutrition Examination Survey (NHANES), Demographic & Laboratory Data, 2001-2002 (The base of the Demographic dataset + all data from medical laboratories).
3. National Health and Nutrition Examination Survey (NHANES), Demographic & Questionnaire Data, 2001-2002 (The base of the Demographic dataset + all data from questionnaires)
Not all files from the 2001-2002 wave are included. This is for two reasons, both of which related to the merging variable (SEQN). For a subset of the files, SEQN is not a unique identifier for cases (i.e. some respondents have multiple cases) or SEQN is not in the file at all. The following datasets from this wave of the NHANES are not included in these three files and can be found individually from the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website at the CDC:
Examination: Dietary Interview (Individual Foods File)
Examination: Dual Energy X-ray Absorptiometry (DXX)
Examination: Dual Energy X-ray Absorptiometry (DXX)
Questionnaire: Analgesics Pain Relievers
Questionnaire: Dietary Supplement Use -- Ingredient Information
Questionnaire: Dietary Supplement Use -- Supplement Blend
Questionnaire: Dietary Supplement Use -- Supplement Information
Questionnaire: Drug Information
Questionnaire: Dietary Supplement Use -- Participants Use of Supplement
Questionnaire: Physical Activity Individual Activity File
Questionnaire: Prescription Medications
Variable SEQN is included for merging files within the waves. All data files should be sorted by SEQN.
Additional details of the design and content of each survey are available at the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website.
Facebook
TwitterThe Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.
The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.
The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.
The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.
National
Sample survey data
The sample was designed to provide estimates of most survey indicators (including fertility, abortion, and contraceptive prevalence) for Yerevan and each of the other ten administrative regions (marzes). The design also called for estimates of infant and child mortality at the national level for Yerevan and other urban areas and rural areas.
The target sample size of 6,500 completed interviews with women age 15-49 was allocated as follows: 1,500 to Yerevan and 500 to each of the ten marzes. Within each marz, the sample was allocated between urban and rural areas in proportion to the population size. This gave a target sample of approximately 2,300 completed interviews for urban areas exclusive of Yerevan and 2,700 completed interviews for the rural sector. Interviews were completed with 6,430 women. Men age 15-54 were interviewed in every third household; this yielded 1,719 completed interviews.
A two-stage sample was used. In the first stage, 260 areas or primary sampling units (PSUs) were selected with probability proportional to population size (PPS) by systematic selection from a list of areas. The list of areas was the 1996 Data Base of Addresses and Households constructed by the National Statistical Service. Because most selected areas were too large to be directly listed, a separate segmentation operation was conducted prior to household listing. Large selected areas were divided into segments of which two segments were included in the sample. A complete listing of households was then carried out in selected segments as well as selected areas that were not segmented.
The listing of households served as the sampling frame for the selection of households in the second stage of sampling. Within each area, households were selected systematically so as to yield an average of 25 completed interviews with eligible women per area. All women 15-49 who stayed in the sampled households on the night before the interview were eligible for the survey. In each segment, a subsample of one-third of all households was selected for the men's component of the survey. In these households, all men 15-54 who stayed in the household on the previous night were eligible for the survey.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
Three questionnaires were used in the ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s Questionnaire. The questionnaires were based on the model survey instruments developed for the MEASURE DHS+ program. The model questionnaires were adapted for use during a series of expert meetings hosted by the Center of Perinatology, Obstetrics, and Gynecology. The questionnaires were developed in English and translated into Armenian and Russian. The questionnaires were pretested in July 2000.
The Household Questionnaire was used to list all usual members of and visitors to a household and to collect information on the physical characteristics of the dwelling unit. The first part of the household questionnaire collected information on the age, sex, residence, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women 15-49 and men 15-54). The second part of the Household Questionnaire consisted of questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities) and on ownership of a variety of consumer goods.
The Women’s Questionnaire obtained information on the following topics: - Background characteristics - Pregnancy history - Antenatal, delivery, and postnatal care - Knowledge and use of contraception - Attitudes toward contraception and abortion - Reproductive and adult health - Vaccinations, birth registration, and health of children under age five - Episodes of diarrhea and respiratory illness of children under age five - Breastfeeding and weaning practices - Height and weight of women and children under age five - Hemoglobin measurement of women and children under age five - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
The Men’s Questionnaire focused on the following topics: - Background characteristics - Health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
After a team had completed interviewing in a cluster, questionnaires were returned promptly to the National Statistical Service in Yerevan for data processing. The office editing staff first checked that questionnaires for all selected households and eligible respondents had been received from the field staff. In addition, a few questions that had not been precoded (e.g., occupation) were coded at this time. Using the ISSA (Integrated System for Survey Analysis) software, a specially trained team of data processing staff entered the questionnaires and edited the resulting data set on microcomputers. The process of office editing and data processing was initiated soon after the beginning of fieldwork and was completed by the end of January 2001.
A total of 6,524 households were selected for the sample, of which 6,150 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 97 percent were successfully interviewed.
In these households, 6,685 women were identified as eligible for the individual interview (i.e., age 15-49). Interviews were completed with 96 percent of them. Of the 1,913 eligible men identified, 90 percent were successfully interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
The overall response rates, the product of the household and the individual response rates, were 94 percent for women and 87 percent for men.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2000 Armenia Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey
Facebook
TwitterThe primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.
Sample survey data [ssd]
The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).
The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.
Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.
For further details on sample design, see Appendix B of the final report.
Face-to-face [f2f]
The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.
Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.
In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix D of the survey final report.
Facebook
TwitterThe following datasets are based on the children and youth (under age 21) beneficiary population and consist of aggregate Mental Health Service data derived from Medi-Cal claims, encounter, and eligibility systems. These datasets were developed in accordance with California Welfare and Institutions Code (WIC) § 14707.5 (added as part of Assembly Bill 470 on 10/7/17). Please contact BHData@dhcs.ca.gov for any questions or to request previous years’ versions of these datasets. Note: The Performance Dashboard AB 470 Report Application Excel tool development has been discontinued. Please see the Behavioral Health reporting data hub at https://behavioralhealth-data.dhcs.ca.gov/ for access to dashboards utilizing these datasets and other behavioral health data.
Facebook
TwitterThe National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999, the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements which were designed to meet current and emerging concerns. The sample for the survey is selected to represent the U.S. population of all ages. Many of the NHANES 2007-2008 questions also were asked in NHANES II 1976-1980, Hispanic HANES 1982-1984, NHANES III 1988-1994, and NHANES 1999-2006. New questions were added to the survey based on recommendations from survey collaborators, NCHS staff, and other interagency work groups. Estimates for previously undiagnosed conditions, as well as those known to and reported by survey respondents, are produced through the survey.
In the 2005-2006 wave, the NHANES includes over 100 datasets. Most have been combined into three datasets for convenience. Each starts with the Demographic dataset and includes datasets of a specific type.
1. National Health and Nutrition Examination Survey (NHANES), Demographic & Examination Data, 2005-2006 (The base of the Demographic dataset + all data from medical examinations).
2. National Health and Nutrition Examination Survey (NHANES), Demographic & Laboratory Data, 2005-2006 (The base of the Demographic dataset + all data from medical laboratories).
3. National Health and Nutrition Examination Survey (NHANES), Demographic & Questionnaire Data, 2005-2006 (The base of the Demographic dataset + all data from questionnaires)
Not all files from the 2005-2006 wave are included. This is for two reasons, both of which related to the merging variable (SEQN). For a subset of the files, SEQN is not a unique identifier for cases (i.e., some respondents have multiple cases) or SEQN is not in the file at all. The following datasets from this wave of the NHANES are not included in these three files and can be found individually from the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website at the CDC:
Examination: Dietary Interview (Individual Foods -- First Day)
Examination: Dietary Interview (Individual Foods -- Second Day)
Examination: Food Frequency Questionnaire -- DietCalc Output
Examination: Physical Activity Monitor
Questionnaire: Dietary Supplement Use -- Ingredient Information
Questionnaire: Dietary Supplement Use -- Supplement Blend
Questionnaire: Dietary Supplement Use -- Supplement Information
Questionnaire: Dietary Supplement Use -- Drug Information
Questionnaire: Dietary Supplement Use -- Participants Use of Supplement
Questionnaire: Physical Activity Individual Activity File
Questionnaire: Prescription Medications
Variable SEQN is included for merging files within the waves. All data files should be sorted by SEQN.
Additional details of the design and content of each survey are available at the "https://www.cdc.gov/nchs/nhanes/index.html" Target="_blank">NHANES website.
Facebook
TwitterThe 2022 Bangladesh Demographic and Health Survey (2022 BDHS) is the ninth national survey to report on the demographic and health conditions of women and their families in Bangladesh. The survey was conducted under the authority of the National Institute of Population Research and Training (NIPORT), Medical Education and Family Welfare Division, Ministry of Health and Family Welfare (MOHFW), Government of Bangladesh.
The primary objective of the 2022 BDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the BDHS collected information on: • Fertility and childhood mortality levels • Fertility preferences • Awareness, approval, and use of family planning methods • Maternal and child health, including breastfeeding practices • Nutrition levels • Newborn care
The information collected through the 2022 BDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the population of Bangladesh. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Bangladesh.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2022 BDHS is the Integrated Multi-Purpose Sampling Master Sample, selected from a complete list of enumeration areas (EAs) covering the whole country. It was prepared by the Bangladesh Bureau of Statistics (BBS) for the 2011 population census of the People’s Republic of Bangladesh. The sampling frame contains information on EA location, type of residence (city corporation, other than city corporation, or rural), and the estimated number of residential households. A sketch map that delineates geographic boundaries is available for each EA.
Bangladesh contains eight administrative divisions: Barishal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is divided into zilas and each zila into upazilas. Each urban area in an upazila is divided into wards, which are further subdivided into mohallas. A rural area in an upazila is divided into union parishads (UPs) and, within UPs, into mouzas. These administrative divisions allow the country to be separated into rural and urban areas.
The survey is based on a two-stage stratified sample of households. In the first stage, 675 EAs (237 in urban areas and 438 in rural areas) were selected with probability proportional to EA size. The BBS drew the sample in the first stage following specifications provided by ICF. A complete household listing operation was then carried out by Mitra and Associates in all selected EAs to provide a sampling frame for the second-stage selection of households.
In the second stage of sampling, a systematic sample of an average of 45 households per EA was selected to provide statistically reliable estimates of key demographic and health variables for urban and rural areas separately and for each of the eight divisions in Bangladesh.
Computer Assisted Personal Interview [capi]
Four types of questionnaires were used for the 2022 BDHS: the Household Questionnaire, the Woman’s Questionnaire (completed by ever-married women age 15–49), the Biomarker Questionnaire, and two verbal autopsy questionnaires. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect population and health issues relevant to Bangladesh. In addition, a selfadministered Fieldworker Questionnaire collected information about the survey’s fieldworkers. The questionnaires were adapted for use in Bangladesh after a series of meetings with a Technical Working Group (TWG). The questionnaires were developed in English and then translated to and printed in Bangla.
The survey data were collected using tablet PCs running Windows 10.1 and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. The Bangla language questionnaire was used for collecting data via computer-assisted personal interviewing (CAPI). The CAPI program accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the PC tablets by each interviewer. Supervisors downloaded interview data to their computer, checked the data for completeness, and monitored fieldwork progress
Each day, after completion of interviews, field supervisors submitted data to the servers. Data were sent to the central office via the internet or other modes of telecommunication allowing electronic transfer of files. The data processing manager monitored the quality of the data received and downloaded completed files into the system. ICF provided the CSPro software for data processing and offered technical assistance in preparation of the data editing programs. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of PC tablets was provided by ICF.
Facebook
TwitterThe Indonesia Demographic and Health Survey (IDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health. The 2002-2003 IDHS follows a sequence of several previous surveys: the 1987 National Indonesia Contraceptive Prevalence Survey (NICPS), the 1991 IDHS, the 1994 IDHS, and the 1997 IDHS. The 2002-2003 IDHS is expanded from the 1997 IDHS by including a collection of information on the participation of currently married men and their wives and children in the health care.
The main objective of the 2002-2003 IDHS is to provide policymakers and program managers in population and health with detailed information on population, family planning, and health. In particular, the 2002-2003 IDHS collected information on the female respondents’ socioeconomic background, fertility levels, marriage and sexual activity, fertility preferences, knowledge and use of family planning methods, breastfeeding practices, childhood and adult mortality including maternal mortality, maternal and child health, and awareness and behavior regarding AIDS and other sexually transmitted infections in Indonesia.
The 2002-2003 IDHS was specifically designed to meet the following objectives: - Provide data concerning fertility, family planning, maternal and child health, maternal mortality, and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs - Measure trends in fertility and contraceptive prevalence rates, analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception - Evaluate achievement of goals previously set by the national health programs, with special focus on maternal and child health - Assess men’s participation and utilization of health services, as well as of their families - Assist in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the area of family planning, fertility, and health in general.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
Administratively, Indonesia is divided into 30 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts and each subdistrict is divided into villages. The entire village is classified as urban or rural.
The primary objective of the 2002-2003 IDHS is to provide estimates with acceptable precision for the following domains: · Indonesia as a whole; · Each of 26 provinces covered in the survey. The four provinces excluded due to political instability are Nanggroe Aceh Darussalam, Maluku, North Maluku and Papua. These provinces cover 4 percent of the total population. · Urban and rural areas of Indonesia; · Each of the five districts in Central Java and the five districts in East Java covered in the Safe Motherhood Project (SMP), to provide information for the monitoring and evaluation of the project. These districts are: - in Central Java: Cilacap, Rembang, Jepara, Pemalang, and Brebes. - in East Java: Trenggalek, Jombang, Ngawi, Sampang and Pamekasan.
The census blocks (CBs) are the primary sampling unit for the 2002-2003 IDHS. CBs were formed during the preparation of the 2000 Population Census. Each CB includes approximately 80 households. In the master sample frame, the CBs are grouped by province, by regency/municipality within a province, and by subdistricts within a regency/municipality. In rural areas, the CBs in each district are listed by their geographical location. In urban areas, the CBs are distinguished by the urban classification (large, medium and small cities) in each subdistrict.
Note: See detailed description of sample design in APPENDIX B of the survey report.
Face-to-face
The 2002-2003 IDHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire for ever-married women 15-49 years old, and the Men’s Questionnaire for currently married men 15-54 years old. The Household Questionnaire and the Women’s Questionnaire were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. In consultation with the NFPCB and MOH, BPS modified these questionnaires to reflect relevant issues in family planning and health in Indonesia. Inputs were also solicited from potential data users to optimize the IDHS in meeting the country’s needs for population and health data. The questionnaires were translated from English into the national language, Bahasa Indonesia.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Basic information collected for each person listed includes the following: age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, the Household Questionnaire also identifies unmarried women and men age 15-24 who are eligible for the individual interview in the Indonesia Young Adult Reproductive Health Survey (IYARHS). Information on characteristics of the household’s dwelling unit, such as the source of water, type of toilet facilities, construction materials used for the floor and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status.
The Women’s Questionnaire was used to collect information from all ever-married women age 15-49. These women were asked questions on the following topics: • Background characteristics, such as age, marital status, education, and media exposure • Knowledge and use of family planning methods • Fertility preferences • Antenatal, delivery, and postnatal care • Breastfeeding and infant feeding practices • Vaccinations and childhood illnesses • Marriage and sexual activity • Woman’s work and husband’s background characteristics • Childhood mortality • Awareness and behavior regarding AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality.
The Men’s Questionnaire was administered to all currently married men age 15-54 in every third household in the IDHS sample. The Men’s Questionnaire collected much of the same information included in the Women’s Questionnaire, but was shorter because it did not contain questions on reproductive history, maternal and child health, nutrition, and maternal mortality. Instead, men were asked about their knowledge and participation in the health-seeking practices for their children.
All completed questionnaires for IDHS, accompanied by their control forms, were returned to the BPS central office in Jakarta for data processing. This process consisted of office editing, coding of open-ended questions, data entry, verification, and editing computer-identified errors. A team of about 40 data entry clerks, data editors, and two data entry supervisors processed the data. Data entry and editing started on November 4, 2002 using a computer package program called CSPro, which was specifically designed to process DHS-type survey data. To prepare the data entry programs, two BPS staff spent three weeks in ORC Macro offices in Calverton, Maryland in April 2002.
A total of 34,738 households were selected for the survey, of which 33,419 were found. Of the encountered households, 33,088 (99 percent) were successfully interviewed. In these households, 29,996 ever-married women 15-49 were identified, and complete interviews were obtained from 29,483 of them (98 percent). From the households selected for interviews with men, 8,740 currently married men 15-54 were identified, and complete interviews were obtained from 8,310 men, or 95 percent of all eligible men. The generally high response rates for both household and individual interviews (for eligible women and men) were due mainly to the strict enforcement of the rule to revisit the originally selected household if no one was at home initially. No substitution for the originally selected households was allowed. Interviewers were instructed to make at least three visits in an effort to contact the household, eligible women, and eligible men.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002-2003 Indonesia Demographic and Health Survey (IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents
Facebook
TwitterThe Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).
National coverage
Individual
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
Sample survey data [ssd]
Afrobarometer Sampling Procedure
Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:
• using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.
The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.
Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.
The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.
Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.
Sample stages Samples are drawn in either four or five stages:
Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.
To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.
Benin - Sample size: 1,200 - Sampling frame: 2013 sampling frame updated from the General Population and Housing Census (RGPH 4) - Sample design: Nationally representative, random, clustered, stratified, multistage area, probability sampling - Stratification: Region, urban-rural distributio - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability proportional to population size (PPPS) - Cluster size: 8 households per PSU - Household selection: Random choice of the starting point, followed by the sampling interval using an interval of 5/10 households - Respondent selection: Gender quota to be achieved by alternating interviews between men and women; potential respondents (i.e. household members) of the appropriate gender are listed, then the computer randomly selects the individual
Face-to-face [f2f]
The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.
The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).
Response rate was 80%.
Facebook
TwitterThe 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D