Facebook
TwitterMost banks have a large customer base - with different characteristics in terms of age, income, values, lifestyle, and more. Customer segmentation is the process of dividing a customer dataset into specific groups based on shared traits.
According to a report from Ernst & Young, “A more granular understanding of consumers is no longer a nice-to-have item, but a strategic and competitive imperative for banking providers. Customer understanding should be a living, breathing part of everyday business, with insights underpinning the full range of banking operations.
This dataset consists of 1 Million+ transaction by over 800K customers for a bank in India. The data contains information such as - customer age (DOB), location, gender, account balance at the time of the transaction, transaction details, transaction amount, etc.
The dataset can be used for different analysis, example -
Facebook
TwitterThe User Profile Data is a structured, anonymized dataset designed to help organizations understand who their users are, what devices they use, and where they are located. Each record provides privacy-compliant linkages between user IDs, demographic profiles, device intelligence, and geolocation data, offering deep context for analytics, segmentation, and personalization.
Built for privacy-safe analytics, the dataset uses hashed identifiers like phone number and email and standardized formats, making it easy to integrate into big-data platforms, AI pipelines, and machine learning models for advanced analytics.
Demographic insights include gender, age, and age group, essential for audience profiling, marketing optimization, and consumer intelligence. All gender data is user-declared and AI-verified through image-based avatar validation, ensuring data accuracy and authenticity.
The dataset’s Device Intelligence Layer includes rich technical attributes such as device brand, model, OS version, user agent, RAM, language, and timezone, enabling technical segmentation, performance analytics, and targeted ad delivery across diverse device ecosystems.
On the location and POI front, the dataset combines GPS-based and IP-based coordinates—including country, region, city, latitude, longitude —to provide high-precision geospatial insights. This enables mobility pattern analysis, market expansion planning, and POI clustering for advanced location intelligence.
Each user record contains onboarding and lifecycle fields like unique IDs, and profile update timestamps, allowing accurate tracking of user acquisition trends, data freshness, and activity duration.
🔍 Key Features • 1st-party, consent-based demographic & device data • AI-verified gender insights via avatar recognition • OS-level app data with 120+ daily sessions per user • Global coverage across APAC and emerging markets • GPS + IP-based geolocation & POI intelligence • Privacy-compliant, hashed identifiers for safe integration
🚀 Use Cases • Audience segmentation & lookalike modeling • Ad-tech and mar-tech optimization • Geospatial & POI analytics • Fraud detection & risk scoring • Personalization & recommendation engines • App performance & device compatibility insights
🏢 Industries Served Ad-Tech • Mar-Tech • FinTech • Telecom • Retail Analytics • Consumer Intelligence • AI & ML Platforms
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
E-Commerce Customer Segmentation Dataset This synthetic dataset contains information about 20 customers of an e-commerce platform, designed for customer segmentation and classification tasks.
Dataset Overview Each record represents a unique customer with demographic and behavioral features that help classify them into different customer segments.
Features: customer_id: Unique identifier for each customer
age: Age of the customer (years)
annual_income_k$: Annual income in thousands of dollars
spending_score: A score between 0 and 100 indicating customer spending habits (higher means more spending)
membership_years: Length of membership in years
segment: Customer segment label; possible values are:
Low (low-value customers)
Medium (medium-value customers)
High (high-value customers)
Potential Use Cases Customer segmentation
Targeted marketing campaigns
Customer lifetime value prediction
Behavioral analytics and profiling
Clustering and classification algorithm testing
Dataset Size 20 samples
6 columns
License This dataset is provided under the Apache 2.0 License.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive customer data suitable for segmentation analysis. It includes anonymized demographic, transactional, and behavioral attributes, allowing for detailed exploration of customer segments. Leveraging this dataset, marketers, data scientists, and business analysts can uncover valuable insights to optimize targeted marketing strategies and enhance customer engagement. Whether you're looking to understand customer behavior or improve campaign effectiveness, this dataset offers a rich resource for actionable insights and informed decision-making.
Anonymized demographic, transactional, and behavioral data. Suitable for customer segmentation analysis. Opportunities to optimize targeted marketing strategies. Valuable insights for improving campaign effectiveness. Ideal for marketers, data scientists, and business analysts.
Segmenting customers based on demographic attributes. Analyzing purchase behavior to identify high-value customer segments. Optimizing marketing campaigns for targeted engagement. Understanding customer preferences and tailoring product offerings accordingly. Evaluating the effectiveness of marketing strategies and iterating for improvement. Explore this dataset to unlock actionable insights and drive success in your marketing initiatives!
Facebook
TwitterA global database of population segmentation data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date audience targeting data trends for market research, audience targeting, and sales territory mapping.
Self-hosted consumer data curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Consumer Data is standardized, unified, and ready to use.
Use cases for the Global Population Database (Consumer Data Data/Segmentation data)
Ad targeting
B2B Market Intelligence
Customer analytics
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Segmentation data export methodology
Our location data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our Population Databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Overview: Customer Segmentation Using K-Means Clustering
Introduction In this project, I analysed customer data from a retail store to identify distinct customer segments. The dataset includes key attributes such as age, city, and total sales of the customers. By leveraging K-Means clustering, an unsupervised machine learning technique, I aim to group customers based on their age and sales metrics. These insights will enable the creation of targeted marketing campaigns tailored to the specific needs and behaviours of each customer segment.
Objectives - Cluster Customers: Use K-Means clustering to group customers based on age and total sales. - Analyse Segments: Examine the characteristics of each customer segment. - Targeted Marketing: Develop strategies for personalized marketing campaigns targeting each identified customer group.
Data Description The dataset comprises:
Methodology - Data Preprocessing: Clean and preprocess the data to handle any missing or inconsistent entries. - Feature Selection: Focus on age and total sales as primary features for clustering. - K-Means Clustering: Apply the K-Means algorithm to identify distinct customer segments. - Cluster Analysis: Analyse the resulting clusters to understand the demographic and sales characteristics of each group. - Marketing Strategy Development: Create targeted marketing strategies for each customer segment to enhance engagement and sales.
Expected Outcomes - Customer Segments: Clear identification of customer groups based on age and purchasing behaviour. - Insights for Marketing: Detailed understanding of each segment to inform targeted marketing efforts. - Business Impact: Enhanced ability to tailor marketing campaigns, potentially leading to increased customer satisfaction and sales.
By clustering customers based on age and total sales, this project aims to provide actionable insights for personalized marketing, ultimately driving better customer engagement and higher sales for the retail store.
Facebook
TwitterGapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.
GIS Data attributes include:
Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.
Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.
Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.
Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.
Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.
Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.
Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.
Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain
Primary Use Cases for GapMaps GIS Data:
Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.
Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)
Network Planning
Customer (Risk) Profiling for insurance/loan approvals
Target Marketing
Competitive Analysis
Market Optimization
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.
Facebook
TwitterHere's a step-by-step guide on how to approach user segmentation for FitTrackr:
Define your segmentation goals: Start by determining what you want to achieve with user segmentation. For example, you might want to identify the most engaged users, understand the demographics of your user base, or target specific user groups with personalized promotions.
Gather data: Collect relevant data about your app users. This can include demographic information (age, gender, location), app usage data (frequency of app usage, time spent on different features), user behavior (types of workouts, goals set, achievements unlocked), and any other relevant data points available to you.
Identify relevant segmentation variables: Based on the goals you defined, identify the key variables that will help you segment your user base effectively. For FitTrackr, potential variables could include age, gender, fitness goals (e.g., weight loss, muscle gain), workout preferences (e.g., cardio, strength training), and user engagement level.
Segment the user base: Use clustering techniques or segmentation algorithms to divide your user base into distinct segments based on the identified variables. You can employ methods such as k-means clustering, hierarchical clustering, or even machine learning algorithms like decision trees or random forests.
Analyze and profile each segment: Once the segmentation is done, analyze each segment to understand their characteristics, preferences, and needs. Create detailed user profiles for each segment, including demographic information, app usage patterns, fitness goals, and any other relevant attributes. This will help you tailor your marketing messages and app features to each segment's specific requirements.
Develop targeted strategies: Based on the insights gained from user profiles, develop targeted marketing strategies and app features for each segment. For example, if you have a segment of users who primarily focus on weight loss, you might create personalized workout plans or send them motivational content related to weight management.
Implement and evaluate: Implement the targeted strategies and monitor their effectiveness. Continuously evaluate and refine your segmentation approach based on user feedback, engagement metrics, and the achievement of your goals.
Facebook
TwitterSuccess.ai’s Consumer Marketing Data API empowers your marketing, analytics, and product teams with on-demand access to a vast and continuously updated dataset of consumer insights. Covering detailed demographics, behavioral patterns, and purchasing histories, this API enables you to go beyond generic outreach and craft tailored campaigns that truly resonate with your target audiences.
With AI-validated accuracy and support for precise filtering, the Consumer Marketing Data API ensures you’re always equipped with the most relevant data. Backed by our Best Price Guarantee, this solution is essential for refining your strategies, improving conversion rates, and driving sustainable growth in today’s competitive consumer landscape.
Why Choose Success.ai’s Consumer Marketing Data API?
Tailored Consumer Insights for Precision Targeting
Comprehensive Global Reach
Continuously Updated and Real-Time Data
Ethical and Compliant
Data Highlights:
Key Features of the Consumer Marketing Data API:
Granular Targeting and Segmentation
Flexible and Seamless Integration
Continuous Data Enrichment
AI-Driven Validation
Strategic Use Cases:
Highly Personalized Marketing Campaigns
Market Expansion and Product Launches
Competitive Analysis and Trend Forecasting
Customer Retention and Loyalty Programs
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Data Accuracy with AI Validation
Customizable and Scalable Solutions
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🛒 E-Commerce Customer Behavior and Sales Dataset 📊 Dataset Overview This comprehensive dataset contains 5,000 e-commerce transactions from a Turkish online retail platform, spanning from January 2023 to March 2024. The dataset provides detailed insights into customer demographics, purchasing behavior, product preferences, and engagement metrics.
🎯 Use Cases This dataset is perfect for:
Customer Segmentation Analysis: Identify distinct customer groups based on behavior Sales Forecasting: Predict future sales trends and patterns Recommendation Systems: Build product recommendation engines Customer Lifetime Value (CLV) Prediction: Estimate customer value Churn Analysis: Identify customers at risk of leaving Marketing Campaign Optimization: Target customers effectively Price Optimization: Analyze price sensitivity across categories Delivery Performance Analysis: Optimize logistics and shipping 📁 Dataset Structure The dataset contains 18 columns with the following features:
Order Information Order_ID: Unique identifier for each order (ORD_XXXXXX format) Date: Transaction date (2023-01-01 to 2024-03-26) Customer Demographics Customer_ID: Unique customer identifier (CUST_XXXXX format) Age: Customer age (18-75 years) Gender: Customer gender (Male, Female, Other) City: Customer city (10 major Turkish cities) Product Information Product_Category: 8 categories (Electronics, Fashion, Home & Garden, Sports, Books, Beauty, Toys, Food) Unit_Price: Price per unit (in TRY/Turkish Lira) Quantity: Number of units purchased (1-5) Transaction Details Discount_Amount: Discount applied (if any) Total_Amount: Final transaction amount after discount Payment_Method: Payment method used (5 types) Customer Behavior Metrics Device_Type: Device used for purchase (Mobile, Desktop, Tablet) Session_Duration_Minutes: Time spent on website (1-120 minutes) Pages_Viewed: Number of pages viewed during session (1-50) Is_Returning_Customer: Whether customer has purchased before (True/False) Post-Purchase Metrics Delivery_Time_Days: Delivery duration (1-30 days) Customer_Rating: Customer satisfaction rating (1-5 stars) 📈 Key Statistics Total Records: 5,000 transactions Date Range: January 2023 - March 2024 (15 months) Average Transaction Value: ~450 TRY Customer Satisfaction: 3.9/5.0 average rating Returning Customer Rate: 60% Mobile Usage: 55% of transactions 🔍 Data Quality ✅ No missing values ✅ Consistent formatting across all fields ✅ Realistic data distributions ✅ Proper data types for all columns ✅ Logical relationships between features 💡 Sample Analysis Ideas Customer Segmentation with K-Means Clustering
Segment customers based on spending, frequency, and recency Sales Trend Analysis
Identify seasonal patterns and peak shopping periods Product Category Performance
Compare revenue, ratings, and return rates across categories Device-Based Behavior Analysis
Understand how device choice affects purchasing patterns Predictive Modeling
Build models to predict customer ratings or purchase amounts City-Level Market Analysis
Compare market performance across different cities 🛠️ Technical Details File Format: CSV (Comma-Separated Values) Encoding: UTF-8 File Size: ~500 KB Delimiter: Comma (,) 📚 Column Descriptions Column Name Data Type Description Example Order_ID String Unique order identifier ORD_001337 Customer_ID String Unique customer identifier CUST_01337 Date DateTime Transaction date 2023-06-15 Age Integer Customer age 35 Gender String Customer gender Female City String Customer city Istanbul Product_Category String Product category Electronics Unit_Price Float Price per unit 1299.99 Quantity Integer Units purchased 2 Discount_Amount Float Discount applied 129.99 Total_Amount Float Final amount paid 2469.99 Payment_Method String Payment method Credit Card Device_Type String Device used Mobile Session_Duration_Minutes Integer Session time 15 Pages_Viewed Integer Pages viewed 8 Is_Returning_Customer Boolean Returning customer True Delivery_Time_Days Integer Delivery duration 3 Customer_Rating Integer Satisfaction rating 5 🎓 Learning Outcomes By working with this dataset, you can learn:
Data cleaning and preprocessing techniques Exploratory Data Analysis (EDA) with Python/R Statistical analysis and hypothesis testing Machine learning model development Data visualization best practices Business intelligence and reporting 📝 Citation If you use this dataset in your research or project, please cite:
E-Commerce Customer Behavior and Sales Dataset (2024) Turkish Online Retail Platform Data (2023-2024) Available on Kaggle ⚖️ License This dataset is released under the CC0: Public Domain license. You are free to use it for any purpose.
🤝 Contribution Found any issues or have suggestions? Feel free to provide feedback!
📞 Contact For questions or collaborations, please reach out through Kaggle.
Happy Analyzing! 🚀
Keywords: e-c...
Facebook
TwitterArchetype Data’s B2C Consumer File is one of the most comprehensive and data-rich consumer datasets in the United States, encompassing over 260 million verified individuals and households. Designed for precision marketing, analytics, and customer intelligence, this dataset delivers unparalleled depth across lifestyle, demographic, financial, and behavioral dimensions enabling businesses to understand, segment, and engage consumers with accuracy and confidence.
Each consumer record includes fundamental demographic elements such as name, age, gender, location, household composition, and contact information. Building upon that, Archetype Data enriches every profile with 400+ lifestyle, financial, and behavioral variables that capture consumer intent, spending capacity, purchasing habits, media preferences, and digital engagement patterns. This multidimensional view empowers marketers, insurers, and data-driven enterprises to identify not just who a consumer is—but how they live, shop, and connect.
What truly differentiates Archetype Data’s B2C file is its integration with our Linq360™ B2B2C dataset, which links consumers to the businesses they own or operate. This linkage provides a powerful bridge between professional and personal identity, offering unparalleled insight into small business owners, entrepreneurs, and professionals as both business decision-makers and consumers.
Whether activating audiences across CTV, programmatic display, social, or direct mail, our data seamlessly maps into today’s leading marketing and advertising ecosystems, including LiveRamp, The Trade Desk, and other major platforms.
The B2C Consumer File supports a wide range of applications; audience segmentation, modeling, CRM enrichment, lookalike development, and attribution measurement—across industries such as retail, finance, insurance, media, and healthcare. Whether you’re building a custom audience for a digital campaign, enriching customer records, or analyzing lifestyle trends within a region, Archetype Data’s file provides the scale and precision needed to deliver meaningful results.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background COVID-19 pandemic had unprecedented global impact on health and society, highlighting the need for a detailed understanding of SARS-CoV-2 evolution in response to host and environmental factors. This study investigates the evolution of SARS-CoV-2 via mutation dynamics, focusing on distinct age cohorts, geographical location, and vaccination status within the Indian population, one of the nations most affected by COVID-19. Methodology Comprehensive dataset, across diverse time points during the Alpha, Delta, and Omicron variant waves, captured essential phases of the pandemic’s footprint in India. By leveraging genomic data from Global Initiative on Sharing Avian Influenza Data (GISAID), we examined the substitution mutation landscape of SARS-CoV-2 in three demographic segments: children (1–17 years), working-age adults (18–64 years), and elderly individuals (65+ years). A balanced dataset of 69,975 samples was used for the study, comprising 23,325 samples from each group. This design ensured high statistical power, as confirmed by power analysis. We employed bioinformatics and statistical analyses, to explore genetic diversity patterns and substitution frequencies across the age groups. Principal findings The working-age group exhibited a notably high frequency of unique substitutions, suggesting that immune pressures within highly interactive populations may accelerate viral adaptation. Geographic analysis emphasizes notable regional variation in substitution rates, potentially driven by population density and local transmission dynamics, while regions with more homogeneous strain circulation show relatively lower substitution rates. The analysis also revealed a significant surge in unique substitutions across all age groups during the vaccination period, with substitution rates remaining elevated even after widespread vaccination, compared to pre-vaccination levels. This trend supports the virus's adaptive response to heightened immune pressures from vaccination, as observed through the increased prevalence of substitutions in important regions of SARS-CoV-2 genome like ORF1ab and Spike, potentially contributing to immune escape and transmissibility. Conclusion Our findings affirm the importance of continuous surveillance on viral evolution, particularly in countries with high transmission rates. This research provides insights for anticipating future viral outbreaks and refining pandemic preparedness strategies, thus enhancing our capacity for proactive global health responses.
Facebook
TwitterThe Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.
The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.
The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.
The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.
National
Sample survey data
The sample was designed to provide estimates of most survey indicators (including fertility, abortion, and contraceptive prevalence) for Yerevan and each of the other ten administrative regions (marzes). The design also called for estimates of infant and child mortality at the national level for Yerevan and other urban areas and rural areas.
The target sample size of 6,500 completed interviews with women age 15-49 was allocated as follows: 1,500 to Yerevan and 500 to each of the ten marzes. Within each marz, the sample was allocated between urban and rural areas in proportion to the population size. This gave a target sample of approximately 2,300 completed interviews for urban areas exclusive of Yerevan and 2,700 completed interviews for the rural sector. Interviews were completed with 6,430 women. Men age 15-54 were interviewed in every third household; this yielded 1,719 completed interviews.
A two-stage sample was used. In the first stage, 260 areas or primary sampling units (PSUs) were selected with probability proportional to population size (PPS) by systematic selection from a list of areas. The list of areas was the 1996 Data Base of Addresses and Households constructed by the National Statistical Service. Because most selected areas were too large to be directly listed, a separate segmentation operation was conducted prior to household listing. Large selected areas were divided into segments of which two segments were included in the sample. A complete listing of households was then carried out in selected segments as well as selected areas that were not segmented.
The listing of households served as the sampling frame for the selection of households in the second stage of sampling. Within each area, households were selected systematically so as to yield an average of 25 completed interviews with eligible women per area. All women 15-49 who stayed in the sampled households on the night before the interview were eligible for the survey. In each segment, a subsample of one-third of all households was selected for the men's component of the survey. In these households, all men 15-54 who stayed in the household on the previous night were eligible for the survey.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
Three questionnaires were used in the ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s Questionnaire. The questionnaires were based on the model survey instruments developed for the MEASURE DHS+ program. The model questionnaires were adapted for use during a series of expert meetings hosted by the Center of Perinatology, Obstetrics, and Gynecology. The questionnaires were developed in English and translated into Armenian and Russian. The questionnaires were pretested in July 2000.
The Household Questionnaire was used to list all usual members of and visitors to a household and to collect information on the physical characteristics of the dwelling unit. The first part of the household questionnaire collected information on the age, sex, residence, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women 15-49 and men 15-54). The second part of the Household Questionnaire consisted of questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities) and on ownership of a variety of consumer goods.
The Women’s Questionnaire obtained information on the following topics: - Background characteristics - Pregnancy history - Antenatal, delivery, and postnatal care - Knowledge and use of contraception - Attitudes toward contraception and abortion - Reproductive and adult health - Vaccinations, birth registration, and health of children under age five - Episodes of diarrhea and respiratory illness of children under age five - Breastfeeding and weaning practices - Height and weight of women and children under age five - Hemoglobin measurement of women and children under age five - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
The Men’s Questionnaire focused on the following topics: - Background characteristics - Health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
After a team had completed interviewing in a cluster, questionnaires were returned promptly to the National Statistical Service in Yerevan for data processing. The office editing staff first checked that questionnaires for all selected households and eligible respondents had been received from the field staff. In addition, a few questions that had not been precoded (e.g., occupation) were coded at this time. Using the ISSA (Integrated System for Survey Analysis) software, a specially trained team of data processing staff entered the questionnaires and edited the resulting data set on microcomputers. The process of office editing and data processing was initiated soon after the beginning of fieldwork and was completed by the end of January 2001.
A total of 6,524 households were selected for the sample, of which 6,150 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 97 percent were successfully interviewed.
In these households, 6,685 women were identified as eligible for the individual interview (i.e., age 15-49). Interviews were completed with 96 percent of them. Of the 1,913 eligible men identified, 90 percent were successfully interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
The overall response rates, the product of the household and the individual response rates, were 94 percent for women and 87 percent for men.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2000 Armenia Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey
Facebook
TwitterLiving Identity™ Asia delivers 401M verified profiles across 7 high-growth Asian markets: Bangladesh, Indonesia, Malaysia, Myanmar, Philippines, Thailand, and Vietnam. This dataset combines identity, lifestyle, demographic, and location signals — ideal for KYC, segmentation, and marketing expansion.
➤ Optimized For: ・Real-time KYC and identity verification ・Location-based audience analytics ・Data-driven market expansion strategy ・Cross-sell/upsell strategy based on lifestyle and affluence ・Customer segmentation and campaign design
➤ Designed For: Marketing & Media Agencies Plan hyper-targeted, region-specific campaigns
Retailers, E-Commerce & Payment Firms Expand across Asia using verified consumer intelligence
Customer Analytics & Intelligence Teams Enrich identity data with lifestyle and location layers
Audience Modeling & AI Teams Train segmentation and targeting models with ground-truth attributes
Financial Services Firms Improve onboarding, scoring, and customer profiling in underbanked markets
➤ Key Highlights: ・401M+ structured profiles across 7 countries ・6 months of refreshed historical activity ・Geo-coded data with lifestyle and demographic detail ・Core identity fields: name, ID, phone, email, address, government ID (where available) ・Delivered securely via on-premise systems
Delivered by 1datapipe®, the global leader in structured identity and lifestyle intelligence. Pricing and additional samples available upon request.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.
Dataset Breakdown:
Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.
Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.
Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.
Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.
Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.
Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.
Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.
Context and Use Cases:
Researchers, data scientists, and developers can use this dataset to:
Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.
Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.
Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.
Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.
Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.
Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.
The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.
Future Considerations:
As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.
By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pairwise comparisons of age groups using chi-square statistics.
Facebook
TwitterThe Global Consumption Database (GCD) contains information on consumption patterns at the national level, by urban/rural area, and by income level (4 categories: lowest, low, middle, higher with thresholds based on a global income distribution), for 92 low and middle-income countries, as of 2010. The data were extracted from national household surveys. The consumption is presented by category of products and services of the International Comparison Program (ICP) 2005, which mostly corresponds to COICOP. For three countries, sub-national data are also available (Brazil, India, and South Africa). Data on population estimates are also included. The data file can be used for the production of the following tables (by urban/rural and income class/consumption segment): - Sample Size by Country, Area and Consumption Segment (Number of Households) - Population 2010 by Country, Area and Consumption Segment - Population 2010 by Country, Area and Consumption Segment, as a Percentage of the National Population - Population 2010 by Country, Area and Consumption Segment, as a Percentage of the Area Population - Population 2010 by Country, Age Group, Sex and Consumption Segment - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in US$ (Million) - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in $PPP - Consumption Shares 2010 by Country, Sector, Area and Consumption Segment (Percent) - Consumption Shares 2010 by Country, Category of Products/Services, Area and Consumption Segment (Percent) - Consumption Shares 2010 by Country, Product/Service, Area and Consumption Segment (Percent) - Percentage of Households who Reported Having Consumed the Product or Service by Country, Consumption Segment and Area (as of Survey Year)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Standardized synonymous and non-synonymous substitution counts across genes in different groups.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kolmogorov-Smirnov test results for temporal distribution.
Facebook
TwitterMost banks have a large customer base - with different characteristics in terms of age, income, values, lifestyle, and more. Customer segmentation is the process of dividing a customer dataset into specific groups based on shared traits.
According to a report from Ernst & Young, “A more granular understanding of consumers is no longer a nice-to-have item, but a strategic and competitive imperative for banking providers. Customer understanding should be a living, breathing part of everyday business, with insights underpinning the full range of banking operations.
This dataset consists of 1 Million+ transaction by over 800K customers for a bank in India. The data contains information such as - customer age (DOB), location, gender, account balance at the time of the transaction, transaction details, transaction amount, etc.
The dataset can be used for different analysis, example -