The total life expectancy at birth in the United States saw no significant changes in 2022 in comparison to the previous year 2021 and remained at around 77.43 years. Life expectancy at birth refers to the expected lifespan of the average newborn, providing that mortality patterns at the time of birth in the given region do not change thereafter.Find more statistics on other topics about the United States with key insights such as crude birth rate, life expectancy of women at birth, and life expectancy of men at birth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about
Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size-dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual and population-level demographic effects of changes in body size for a terrestrial salamander using capture-mark-recapture data. For our analysis, we implemented an integral projection model parameterized with capture-recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in indivi..., ,
This statistic shows the demographic changes having largest impact according to insurance companies in Africa in 2017. In 2017, 79 percent of African insurers said that the growing black middle class would have a large impact on the insurance market in Africa, whereas only 14 percent said the same about population growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Hoboken population by year. The dataset can be utilized to understand the population trend of Hoboken.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Demographic change in Europe.
Topics: most pressing demographic challenges in the own country; most important threats to the EU’s economic prosperity and competitiveness; attitude towards the following statements about the current demographic trends in the EU: contribute to labour shortages, contribute to skills mismatches, put the EU´s long-term economic prosperity and competitiveness at risk, undermine long-term sustainability of public finances, intensify differences between and within EU member states, affect personal prospects and future possibilities; preferred level of action to manage demographic change: EU level, member state level, both levels, measures to manage demographic change should not be a political priority; attitude towards the following statement: managing demographic change requires close cooperation between all relevant levels of government; most effective actions to address the consequences of a shrinking workforce in the own country: facilitate the combination of paid work and private life, facilitate longer working lives, reform pensions systems, facilitate labour mobility and migration to attract talent from abroad, address youth unemployment, support regions affected by depopulation, other; preferred governmental actions in the own country to enable the current and future generations to lead an active life in old age: support lifelong education and training, adjust workplace conditions to the needs of older persons, allow people to continue working past the official retirement age if they want to, make sure pensions are high enough, provide high-quality and affordable health care services, provide high-quality and affordable long-term care services, provide adequate and affordable housing, other; attitude towards the following statement: digital technologies, robotics and artificial intelligence can help address the consequences of a shrinking and ageing population, including possible labour shortages.
Demography: age; sex; nationality; financial difficulties; age at end of education; occupation; professional position; type of community; household composition and household size; own a mobile phone and fixed (landline) phone.
Additionally coded was: respondent ID; country; type of phone line; region; nation group; weighting factor.
This web map indicates the annual compound rate of total population change in the United States from 2000 to 2010. Total Population is the total number of residents in an area. Residence refers to the "usual place" where a person lives. Total Population for 2000 is from the U.S. Census 2000. The 2010 Total Population variable is estimated by Esri's proven annual demographic update methodology that blends GIS with statistical technology and a unique combination of data sources.The map is symbolized so that you can easily distinguish areas of population growth (i.e. shades of green) from areas of population decline (i.e. shades of red). It uses a 3 D effect to further emphasize those trends. The map reveals interesting patterns of recent population change in various regions and communities across the United States.The map shows population change at the County and Census Tract levels. The geography depicts Counties at 25m to 750k scale, Census Tracts at 750k to 100k scale.Esri's Updated Demographics (2010/2015) – Population, age, income, sex, race, marital status and other variables are among the variables included in the database. Each year, Esri's data development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of geographies. See Updated Demographics for more information.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.
Key features of the dataset:
✅ Covers multiple countries and regions worldwide
✅ Includes historical and recent population data
✅ Provides year-wise population growth and growth rate (%)
✅ Categorizes data by country and decade for better trend analysis
This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.
The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.
Many studies propose that Quaternary climatic cycles contracted and /or expanded the ranges of species and biomes. Strong expansion-contraction dynamics of biomes presume concerted demographic changes of associated fauna. The analysis of temporal concordance of demographic changes can be used to test the influence of Quaternary climate on diversification processes. Hierarchical approximate Bayesian computation (hABC) is a powerful and flexible approach that models genetic data from multiple species, and can be used to estimate the temporal concordance of demographic processes. Using available single-locus data we can now perform large-scale analyses, both in terms of number of species and geographic scope. Here we first compared the power of four alternative hABC models for a collection of single-locus data. We found that the model incorporating an a priori hypothesis about the timing of simultaneous demographic change had the best performance. Secondly, we applied the hABC models to a ...
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global retirement communities market size was valued at approximately USD 250 billion in 2023 and is projected to reach around USD 400 billion by 2032, growing at a CAGR of about 5%. This growth is primarily driven by the aging global population, an increase in life expectancy, and changing lifestyle preferences among seniors. The shift towards comprehensive care and the integration of health and wellness services within retirement communities have further fueled this market's expansion. As societies worldwide continue to experience demographic shifts, the demand for retirement communities that offer a blend of healthcare, hospitality, and recreational amenities is expected to surge, underpinning the robust growth trajectory of the sector.
The burgeoning aging population is one of the primary growth factors for the retirement communities market. As advances in healthcare continue to improve life expectancy, a significant proportion of the global population is projected to fall within the senior age bracket, necessitating adequate living solutions for them. This demographic shift is particularly pronounced in developed regions such as North America and Europe, where a considerable percentage of the population is transitioning into retirement age. Additionally, emerging economies in Asia Pacific are also witnessing an increase in the elderly population, driven by improved healthcare infrastructure and living standards. This demographic evolution necessitates the development of retirement communities equipped with facilities that cater to both the healthcare and lifestyle needs of seniors.
Another significant growth factor is the increased financial independence and spending power among seniors. With many from the baby boomer generation having accrued substantial savings and investments, there is a growing willingness to spend on quality living environments that provide comfort, security, and access to healthcare and recreational activities. This financial capability, coupled with the desire for a community living environment that offers social interaction and reduces isolation, is a key driver for the retirement communities market. Furthermore, these communities are increasingly incorporating technology to enhance the quality of life for residents, with features such as telemedicine, smart home technologies, and digital health monitoring, which are appealing to the tech-savvy senior demographic.
Moreover, the changing societal norms and lifestyle preferences among the elderly are also contributing to the market's growth. TodayÂ’s seniors are more active and health-conscious than ever before, seeking retirement communities that offer wellness programs, fitness centers, and social activities that align with their lifestyle choices. The emphasis on holistic well-being has led to a rise in integrated community models that provide a continuum of care, from independent living to assisted living and nursing care, allowing seniors to age in place with dignity and peace of mind. This trend is expected to intensify in the coming years, further propelling the growth of the retirement communities market globally.
In recent years, the concept of Smart Communities has emerged as a transformative force within the retirement sector. These communities leverage advanced technologies to create interconnected environments that enhance the quality of life for residents. By integrating smart home devices, IoT solutions, and data-driven services, Smart Communities offer personalized and efficient living experiences. This technological integration not only improves safety and convenience for seniors but also promotes sustainable living practices. As the demand for tech-savvy solutions grows, retirement communities are increasingly adopting smart technologies to meet the evolving expectations of their residents, positioning themselves at the forefront of innovation in senior living.
Regionally, North America currently holds the largest share of the retirement communities market, driven by a well-established infrastructure, high disposable incomes, and a significant aging population. Europe follows closely, benefiting from similar demographic trends and a strong emphasis on social welfare programs for the elderly. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest growth rate over the forecast period, fueled by rapid urbanization, economic growth, and increasing healthcare investments. Countries such as China, Japan, and India are at the forefront of this expansion, as they adapt to th
This dataset provides a historical overview of key global indicators, including Gross Domestic Product (GDP), population growth, and CO2 emissions. It captures economic trends, demographic shifts, and environmental impacts over multiple decades, making it useful for researchers, analysts, and policymakers.
The dataset includes Real GDP (inflation-adjusted), allowing for economic trend analysis while accounting for inflation effects. Additionally, it incorporates CO2 emissions data, enabling studies on the relationship between economic growth and environmental impact.
This dataset is valuable for multiple research areas:
✅ Macroeconomic Analysis – Study global economic growth, recessions, and recovery trends.
✅ Inflation & Monetary Policy – Compare nominal vs. real GDP to assess inflationary trends.
✅ Climate Change Research – Analyze CO2 emissions alongside economic growth to identify sustainability challenges.
✅ Predictive Modeling – Train machine learning models for forecasting GDP, population, or emissions.
✅ Public Policy & Development – Evaluate the impact of economic and environmental policies over time.
This dataset is shared for educational and analytical purposes only.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tuberculosis (TB) incidence has been in steady decline in China over the last few decades. However, ongoing demographic transition, fueled by aging, and massive internal migration could have important implications for TB control in the future. We collated data on TB notification, demography, and drug resistance between 2004 and 2017 across seven cities in Shandong, the second most populous province in China. Using these data, and age-period-cohort models, we (i) quantified heterogeneities in TB incidence across cities, by age, sex, resident status, and occupation and (ii) projected future trends in TB incidence, including drug-resistant TB (DR-TB). Between 2006 and 2017, we observed (i) substantial variability in the rates of annual change in TB incidence across cities, from -4.84 to 1.52%; (ii) heterogeneities in the increments in the proportion of patients over 60 among reported TB cases differs from 2 to 13%, and from 0 to 17% for women; (iii) huge differences across cities in the annual growths in TB notification rates among migrant population between 2007 and 2017, from 2.81 cases per 100K migrants per year in Jinan to 22.11 cases per 100K migrants per year in Liaocheng, with drastically increasing burden of TB cases from farmers; and (iv) moderate and stable increase in the notification rates of DR-TB in the province. All of these trends were projected to continue over the next decade, increasing heterogeneities in TB incidence across cities and between populations. To sustain declines in TB incidence and to prevent an increase in Multiple DR-TB (MDR-TB) in the future in China, future TB control strategies may (i) need to be tailored to local demography, (ii) prioritize key populations, such as elderly and internal migrants, and (iii) enhance DR-TB surveillance.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The use of genetic data for identifying species-level lineages across the tree of life has received increasing attention in the field of systematics over the past decade. The multispecies coalescent model provides a framework for understanding the process of lineage divergence, and has become widely adopted for delimiting species. However, because these studies lack an explicit assessment of model fit, in many cases, the accuracy of the inferred species boundaries are unknown. This is concerning given the large amount of empirical data and theory that highlight the complexity of the speciation process. Here, we seek to fill this gap by using simulation to characterize the sensitivity of inference under the multispecies coalescent to several violations of model assumptions thought to be common in empirical data. We also assess the fit of the multispecies coalescent model to empirical data in the context of species delimitation. Our results show substantial variation in model fit across datasets. Posterior predictive tests find the poorest model performance in datasets that were hypothesized to be impacted by model violations. We also show that while the inferences assuming the multispecies coalescent are robust to minor model violations, such inferences can be biased under some biologically plausible scenarios. Taken together, these results suggest that researchers can identify individual datasets in which species delimitation under the multispecies coalescent is likely to be problematic, thereby highlighting the cases where additional lines of evidence to identify species boundaries are particularly important to collect. Our study supports a growing body of work highlighting the importance of model checking in phylogenetics, and the usefulness of tailoring tests of model fit to assess the reliability of particular inferences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the West Burlington population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of West Burlington across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of West Burlington was 3,161, a 0.09% decrease year-by-year from 2022. Previously, in 2022, West Burlington population was 3,164, a decline of 0.60% compared to a population of 3,183 in 2021. Over the last 20 plus years, between 2000 and 2023, population of West Burlington increased by 13. In this period, the peak population was 3,362 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West Burlington Population by Year. You can refer the same here
Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change: April 1, 2010 to July 1, 2017 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through March. // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. See the Population Estimates Glossary at https://www.census.gov/programs-surveys/popest/about/glossary.html. // Net international migration in the United States includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program.// The Office of Management and Budget's statistical area delineations for metropolitan, micropolitan, and combined statistical areas, as well as metropolitan divisions, are those issued by that agency in July 2015. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., Vintage 2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
Political attitudes and behaviors with regard to demographic change.
Topics: Assessment of the national economic situation (retrospective, current, prospective); concern regarding demographic change; anticipated problems caused by an aging society; perceived age limit of older and younger people; knowledge test: Proportion of the country´s population over 65; perception of commonalities in own age group; perceived frequency of media reports on generational conflicts; political interest; assessment of one´s own economic situation (retrospective, current, prospective); voter turnout (Sunday question); party preference (voters and non-voters); perceptions of social conflicts between selected social groups (people with and without children, politically left and right, young and old, poor and rich, employed and retired, Germans and foreigners, East Germans and West Germans); most important political goals (post-materialism, Inglehart indicators); opinion on selected statements about old and young (frequent abuse of social benefits in Germany, assessment of representation of younger people´s interests in politics, assessment of representation of older people in political positions, older people should organize their own party, older people should support younger people and younger people should support older people); perceived strength of general intergenerational support; financial support of a family member of another generation resp. frequency of self-received financial support (intergenerational transfers); frequency of support from a person in everyday life who belongs to another generation or frequency of self-received support; satisfaction with democracy; political trust (Bundestag, politicians, Federal Constitutional Court, federal government, media); opinion on selected statements about young and old (importance of contact with significantly younger persons, evaluation of the representation of the interests of older persons in politics, older persons live at the expense of the following generations, older persons have built up what the younger persons live on today, importance of contact with significantly older persons, evaluation of the representation of younger persons in political positions; political efficacy; electoral norm (voter turnout as a civic duty); sympathy scalometer of political parties (CDU/CSU, SPD, FDP, Greens, Die Linke); satisfaction with selected policy areas (reduction of unemployment, health, education, financial security for the elderly, family, care in old age); preferred level of government spending in the aforementioned areas; preferred government responsibility in the aforementioned areas; most competent party to solve the problems in the aforementioned areas (problem-solving competence); salience of the aforementioned policy areas; self-ranking on a left-right continuum; assessment of the representation of older people´s interests by political parties (CDU/CSU, SPD, FDP, Greens, Die Linke); assessment of the representation of younger people´s interests by political parties (CDU/CSU, SPD, FDP, Greens, Die Linke); recall Bundestag elections 2013 (voter turnout, voting decision); expected occurrence of various future scenarios (conflicts between older and younger people, refusal of younger people to pay for the pensions of older people, older people more likely to assert their political interests than younger people, increasing old-age poverty, refusal of younger people to pay for the medical care of older people, Germany will no longer be able to afford current pension levels, Elderly will no longer receive all available medical benefits); reliance most likely on state, family or self for own retirement; knowledge test: Year of phased introduction of retirement at 67; civic engagement; hours per week of volunteering; perception of social justice; general life satisfaction; party affiliation and strength of party identification; concerns regarding own retirement security (financial/medical) or feared unemployment; religious affiliation; religiosity; salience of selected life domains (family and friends, health, leisure, politics, income, education, work, and occupation); self-assessment of class affiliation; residence description.
Demography: age (grouped) and year of birth; sex; household size; number of persons under 18 in household; household composition (one, two, or three generations); number of children and grandchildren; regrets about own childlessness; partnership; living with partner; married to partner; German citizenship; German citizenship since birth or year of acquiring German citizenship; country of birth (in the old federal states (West Germany, in the new federal states (East Germany or former GDR) or abroad); highest school degree; university degree; current and former employment; current and former occupation.
Additionally coded were: Federal state; area; region West East; weighting factors; interview date.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Newark population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Newark across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Newark was 304,960, a 0.13% increase year-by-year from 2022. Previously, in 2022, Newark population was 304,552, a decline of 0.92% compared to a population of 307,368 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Newark increased by 32,247. In this period, the peak population was 310,645 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Newark Population by Year. You can refer the same here
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.
The demographic dataset of Cayo Santiago rhesus macaques was shared by the Caribbean Primate Research Center, University of Puerto Rico.
The total life expectancy at birth in the United States saw no significant changes in 2022 in comparison to the previous year 2021 and remained at around 77.43 years. Life expectancy at birth refers to the expected lifespan of the average newborn, providing that mortality patterns at the time of birth in the given region do not change thereafter.Find more statistics on other topics about the United States with key insights such as crude birth rate, life expectancy of women at birth, and life expectancy of men at birth.