Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Template for Participant demographics.
Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated
Includes questions pertaining to: race & ethnicitygenderpreferred pronounssexual orientationagetribal affiliationdisabilityincomehouseholdlanguagelocationeducationhousing statustransportationemployment status
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
this form described the socio demographic characteristics of the participants
This infographic template provides an overview of a community’s demographics using a color palette of reds and yellows on a dark background. It contains demographic data provided by Esri and the U.S. Census Bureau, from the Esri Updated Demographics, American Community Survey, and Census 2010 datasets. Variables included in the template present information on population, occupation, housing, income, age, education, and commute times. This infographic may be useful for learning about basic demographic and work-related information in an area.
This infographic template provides an overview of key demographic information about a population. It contains demographic data provided by Esri and Data Axle from the Esri Updated Demographics dataset. Variables included in the template present information on education, business, income, employment, and households by income. This infographic may be useful for people who want to learn more about a population.
This infographic template provides an overview of a community’s demographics using a color palette of reds and yellows on a dark background. It contains demographic data provided by Esri and the U.S. Census Bureau, from the Esri Updated Demographics, American Community Survey, and Census 2010 datasets. Variables included in the template present information on population, occupation, housing, income, age, education, and commute times. This infographic may be useful for learning about basic demographic and work-related information in an area.
Community Analyst Report Template. This infographic contains data provided by U.S. Census (2020), ACS (2017-2021), Esri (2023, 2028), Esri-Data Axle (2023).
Community Analyst Report Template. This infographic contains data provided by Esri. The vintage of the data is 2023, 2028.
This infographic template provides an overview of the demographic factors that contribute to an individual’s risk during a natural disaster or catastrophe. It contains demographic data provided by Esri, the U.S. Census Bureau, and Data Axle from the Esri Updated Demographics, American Community Survey, and Business Summary datasets. Variables included in the template present information on age, disability, vehicle access, poverty level, languages spoken, income, and home value. This infographic may be useful for assessing the number of people most at risk during a crisis and how best to reach them.
This profile is based on the ERSI Community Analyst Report Template. This infographic contains data provided by Esri. The vintage of the data is 2021, 2026.
This infographic template provides an overview of a community’s demographics using a color palette of reds and yellows on a dark background. It contains demographic data provided by Esri and the U.S. Census Bureau, from the Esri Updated Demographics, American Community Survey, and Census 2010 datasets. Variables included in the template present information on population, occupation, housing, income, age, education, and commute times. This infographic may be useful for learning about basic demographic and work-related information in an area.
The data is prepared using AmeriCorps members who began service on any day in fiscal year (FY) 2017. The members may have served 1 to 365 days during their term. Members who are in never served, disqualified, pre-service, or deferred statuses were excluded from this analysis. AmeriCorps VISTA and AmeriCorps NCCC race and ethnicity data come from the member application to serve. The code to extract the data between the two programs is the same. The ASN race and ethnicity data comes from the enrollment form. The enrollment form may exist multiple times if the member enrolled in more than one term. It is not uncommon for each enrollment form to have conflicting information about the member’s race and ethnicity. The member may have enrollment form data for terms served outside of the timeframe of the dataset. For example, if we are reporting on members who began service in FY17, then a member who also served in FY16 may have race and ethnicity information in the FY16 enrollment form and no race or ethnicity information or conflicting information in the FY17 enrollment form. In the case of conflicting information, this analysis assumes each instance of race designation is correct. If a member reports themselves as “Asian or Asian American” in one enrollment form and “White” in another enrollment form, then the analysis categorizes this person as someone who identifies with multiple race selections vs. one or the other. In the case of ethnicity, if a member indicates that they are not Hispanic or Latino/a in one form, but that they are in another, this analysis assumes the affirmative—and they will be categorized as Hispanic or Latino/a. Lastly, the totals include the total results from the query plus the difference between the query and the raw count of members who started service in that fiscal year. The members who did not have a record in the invite table and enrollment table were added to the non-response category. Senior Corps Figures come from the Annual Progress Report Supplement as of April 11, 2018. Percentages are calculated from totals of the subcategories, excluding the non-response categories.
The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.
National coverage
Sample survey data [ssd]
Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.
The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).
Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.
Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.
Face-to-face [f2f]
The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.
The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence
In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.
The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.
Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.
Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.
Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.
In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.
In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Emergency medical services (EMS) workforce demographics in the United States do not reflect the diversity of the population served. Despite some efforts by professional organizations to create a more representative workforce, little has changed in the last decade. This scoping review aims to summarize existing literature on the demographic composition, recruitment, retention, and workplace experience of underrepresented groups within EMS. Peer-reviewed studies were obtained from a search of PubMed, CINAHL, Web of Science, ProQuest Thesis and Dissertations, and non-peer-reviewed (“gray”) literature from 1960 to present. Abstracts and included full-text articles were screened by two independent reviewers trained on inclusion/exclusion criteria. Studies were included if they pertained to the demographics, training, hiring, retention, promotion, compensation, or workplace experience of underrepresented groups in United States EMS by race, ethnicity, sexual orientation, or gender. Studies of non-EMS fire department activities were excluded. Disputes were resolved by two authors. A single reviewer screened the gray literature. Data extraction was performed using a standardized electronic form. Results were summarized qualitatively. We identified 87 relevant full-text articles from the peer-reviewed literature and 250 items of gray literature. Primary themes emerging from peer-reviewed literature included workplace experience (n = 48), demographics (n = 12), workforce entry and exit (n = 8), education and testing (n = 7), compensation and benefits (n = 5), and leadership, mentorship, and promotion (n = 4). Most articles focused on sex/gender comparisons (65/87, 75%), followed by race/ethnicity comparisons (42/87, 48%). Few articles examined sexual orientation (3/87, 3%). One study focused on telecommunicators and three included EMS physicians. Most studies (n = 60, 69%) were published in the last decade. In the gray literature, media articles (216/250, 86%) demonstrated significant industry discourse surrounding these primary themes. Existing EMS workforce research demonstrates continued underrepresentation of women and nonwhite personnel. Additionally, these studies raise concerns for pervasive negative workplace experiences including sexual harassment and factors that negatively affect recruitment and retention, including bias in candidate testing, a gender pay gap, and unequal promotion opportunities. Additional research is needed to elucidate recruitment and retention program efficacy, the demographic composition of EMS leadership, and the prevalence of racial harassment and discrimination in this workforce.
The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.
The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.
The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.
All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.
Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.
A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.
Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A collection of 8 brain maps. Each brain map is a 3D array of values representing properties of the brain at different locations.
The National Institute of Mental Health (NIMH) Macaque Template (NMT) is an anatomical structural MRI template of the macaque brain. It was created using the freely available software package ANTs. The NMT is technically the non-linear diffeomorphic average of T1-weighted Modified Driven Equilibrium Fourier Transform (MDEFT) scans from 31 adult rhesus macaque brains, generated by iteratively registering and averaging each individual subject to a common space. For more information on the template creation process, see our paper.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2024-02-08.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (2020 NES-D Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0051; 2021 ABS approval number: CBDRB-FY23-0479)...Key Table Information:.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms)...Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2021 Annual Business Survey (ABS) collection. Data are also obtained from administrative records, the 2017 Economic Census, and other economic surveys...Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2021 ABS collection year produces statistics for the 2020 reference year. The "Year" column in the table is the reference year...Data Items and Other Identifying Records:.Data include estimates on:.Total number of employer and nonemployer firms. Total sales and receipts of employer and nonemployer firms (reported in $1,000 of dollars). Number of employer firms (firms with paid employees). Sales and receipts of employer firms (reported in $1,000s of dollars). Number of employees (during the March 12 pay period). Annual payroll of employer firms (reported in $1,000s of dollars). Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female (50% / 50%). . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic (50% / 50%). Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority (50% / 50%). Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran (50% / 50%). Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. Nonemployer data do not have standard error or relative standard error columns as these data are from the universe of nonemployer firms, not from a data sample....Industry and Geography Coverage:.Data are shown for the total for all sectors (00) and the 2-digit NAICS levels for the U.S., states and District of Columbia, and metro areas. Data are shown for the 3-digit and 4-digit NAICS for U.S. only. Nonemployer data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...Employer Data Footnotes:.Footnote 660 - Agriculture, forestry, fishing and hunting (Sector 11): Crop and Animal Production (NAICS 111 and ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table includes information on business demography according to the European standard. Figures in this table are also submitted in this form to Eurostat. Information concerns the population of active enterprises, enterprise births and deaths, and the 1, 2, 3, 4 and 5 year survivors after birth, broken down by size class based on number of employees and by the National Classification of Economic Activity 2008 (NCEA 2008, based on NACE Rev 2.0). Data also includes persons employed and employees in active enterprises, births and deaths, as well as persons employed for surviving births at the start and end of the survival period.
Data available from: 2010
Status of the figures: The figures in this table are final for 2010 to 2021. The figures for 2022 are provisional. Only the data on Dissolved companies for 2022 will be adjusted.
Changes as of October 16, 2024: The provisional figures for 2022 have been added.
When will new figures be released? Figures on a new reporting year (T – 2) will be published in July of the current year T.
https://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
This data is no longer being actively updated. The dataset is deprecated and will be removed from the Portal within the next three months. If you have any questions, please reach out to the Open Data team by filling out the following Contact Us form: https://louisvilleky.wufoo.com/forms/open-data-contact-form/ The Community Services division encompasses the client-based services including Neighborhood Place, Community Action Partnership, Self-Sufficiency Services, and Outreach & Advocacy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Template for Participant demographics.