89 datasets found
  1. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  2. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    University of Hawaiʻi at Mānoa
    Florida International University
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  3. Fertility rate of the world and continents 1950-2050

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around five children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have five or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  4. Countries with the largest population 2025

    • ai-chatbox.pro
    • statista.com
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistik%2Fdaten%2Fstudie%2F1722%2Fumfrage%2Fbevoelkerungsreichste-laender-der-welt%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  5. Total fertility rate worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total fertility rate worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805064/fertility-rate-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.

  6. f

    Appendix B. Correlation between the sensitivities (respectively...

    • wiley.figshare.com
    html
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Curtis A. Smith; Itamar Giladi; Young-Seon Lee (2023). Appendix B. Correlation between the sensitivities (respectively elasticities) of spread rate and population growth rate λ to changes in the demographic transitions found in matrix B (Eq. 4). [Dataset]. http://doi.org/10.6084/m9.figshare.3531812.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Wiley
    Authors
    Curtis A. Smith; Itamar Giladi; Young-Seon Lee
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Correlation between the sensitivities (respectively elasticities) of spread rate and population growth rate λ to changes in the demographic transitions found in matrix B (Eq. 4).

  7. Total population of the BRICS countries 2000-2030

    • ai-chatbox.pro
    • statista.com
    Updated Jun 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F9896%2Fchina-statista-dossier%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  8. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  9. Countries with the highest fertility rates 2025

    • ai-chatbox.pro
    • statista.com
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest fertility rates 2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F262884%2Fcountries-with-the-highest-fertility-rates%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.

  10. N

    Red Level, AL Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Red Level, AL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Red Level from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/red-level-al-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alabama, Red Level
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Red Level population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Red Level across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Red Level was 434, a 0.70% increase year-by-year from 2022. Previously, in 2022, Red Level population was 431, an increase of 0.47% compared to a population of 429 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Red Level decreased by 111. In this period, the peak population was 545 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Red Level is shown in this column.
    • Year on Year Change: This column displays the change in Red Level population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Red Level Population by Year. You can refer the same here

  11. o

    Data from: Population responses to perturbations: the importance of...

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Jan 9, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton (2012). Data from: Population responses to perturbations: the importance of trait-based analysis illustrated through a microcosm experiment [Dataset]. http://doi.org/10.5061/dryad.68sd84vh
    Explore at:
    Dataset updated
    Jan 9, 2012
    Authors
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton
    Description

    Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. Daily sampling of individual mitesday: day of the study (day t) | no: individual ID for each day | surv: survival to day t+1? | stage: life-history stage at day t | stage1: life-history stage at day t+1 | trns: transition to next stage at day t+1? | tsex: transition to female stage at day t+1? | dens: weighted population density at day t | size: log(body size) at day t | size1: log(body size) at day t+1 | rep: produced eggs at day t+1? | rec: number of eggs produced on day t+1 | day2: number of eggs hatched on day t+2 | day3: number of eggs hatched on day t+3 | day4: number of eggs hatched on day t+4 | day5: number of eggs hatched on day t+5 | day6: number of eggs hatched on day t+6 | day7: number of eggs hatched after day t+6 | eggsurv: proportion of eggs hatched | hrate: daily hatching rate | eggsize: average log(egg size)ind_data.csvAdditional experiment measuring egg-to-larva size transitioneggSize: log(egg size) | larvaSize: log(larva size)egg_data.csvDaily population censusday: day of the study (day t) | e: number of eggs | l: number of larvae | p: number of protonymphs | t: number of tritonymphs | f: number of female adults | m: number of male adults | group: (c)ontrol or (s)ample group? | dens: weighted population densitypop_census.csv

  12. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  13. d

    Data from: Life stage hypothesis modeling determines insect vulnerability...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J. Simone Durney; Diane M. Debinski; Stephen F. Matter (2024). Life stage hypothesis modeling determines insect vulnerability during developmental life stages to climate extremes [Dataset]. http://doi.org/10.5061/dryad.w0vt4b92t
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    J. Simone Durney; Diane M. Debinski; Stephen F. Matter
    Description

    Butterflies are important bioindicators that can be used to monitor the effects of climate change, particularly in montane environments. Changes in butterfly population size over time, reflective of indicator life stages, can signal changes that have occurred or are occurring in their environment indicating ecosystem health. From the perspective of understanding butterflies as bioindicators in these systems, it is essential to identify influential environmental variables at each life stage that have the greatest effect on population dynamics. Life stage hypothesis modeling was used to assess the effects of multiple temperature and precipitation metrics on the population growth rate of a Parnassius clodius butterfly population from 2009 to 2018. Extreme maximum temperatures during the larval-pupal life stages were identified to have a significant negative effect on population growth rate. We speculate that higher temperatures during the spring ephemeral host plant’s flowering, and P. clo..., Butterfly Mark-Recapture Mark-recapture methods were used to study a population of P. clodius at Pilgrim Creek in Grand Teton National Park, Wyoming, USA across annual flight seasons between 2009 and 2018 during June and July. Surveys were not carried out in 2012 and 2013. Six 50m x 50m plots a minimum of 100m apart, were located using GPS units, flagged prior to the flight season of P. clodius, and surveyed each year. Survey plots were initially established in 2000 in an effort to balance increasing the area sampled, decreasing the number of recaptures, and maintaining independent sampling within a single meadow (Auckland et al. 2004). Mark-recapture surveys began a few days after the beginning of the flight season and continued until only one or two butterflies per plot were caught during a survey period. Plots were monitored daily if weather permitted throughout each flight season. Surveys were conducted when temperatures were above 21°C, wind was <16kmh-1, and clouds were not obs..., , # Life stage hypothesis modeling determines insect vulnerability during developmental life stages to climate extremes

    https://doi.org/10.5061/dryad.w0vt4b92t

    Description of the data and file structure

    Files and variables

    File: p.clodius_environmental.variables.binned.by.lifestage_2009-2021_SR.BC_Jan2023_ALL_metric.csv

    Description:Â Mark-Recapture-Release data for Parnassius clodius butterflies in Pilgrim Creek, Wyoming, U.S.A. from 2009-2011 and 2014-2018

    Variables
    • Year: calendar year
    • effort.num.surveys: number of surveys conducted per year
    • caught: total number of butterflies caught per year
    • caught.effort: total number of butterflies caught per year divided by the total number of surveys conducted per year
    • caught.recap: total number of butterflies caught, including recaptures, per year
    • est.popsize: estimated population size using Rmark
    • logNt.caught: log transformation of the total number of butter...
  14. w

    Sahel Women Empowerment and Demographic Dividend Initiative 2018 - Burkina...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harounan Kazianga (2024). Sahel Women Empowerment and Demographic Dividend Initiative 2018 - Burkina Faso [Dataset]. https://microdata.worldbank.org/index.php/catalog/6255
    Explore at:
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Omer Combary
    Harounan Kazianga
    Time period covered
    2018
    Area covered
    Burkina Faso
    Description

    Abstract

    The Sahel Women Empowerment and Demographic Dividend (P150080) project in Burkina Faso focuses on advancing women's empowerment to spur demographic transition and mitigate gender disparities. This project seeks to empower young women by promoting entrepreneurship through business skills training and grants, and by enhancing access to reproductive health information and contraception, thereby aiming to lower fertility rates.

    The World Bank Africa Gender Innovation Lab, along with its partners, is conducting detailed impact evaluations of the SWEDD program’s key initiatives to gauge their effects on child marriage, fertility, and the empowerment of adolescent girls and young women.

    This data represents the first round of data collection (baseline) for the impact evaluation and include a household and community level surveys. The household level sample comprises 9857 households, 70,169 individuals and 9382 adolescent girls and young wives aged 24 living in the Boucle du Mouhoun and the East regions of Burkina Faso. The community level sample includes 175 villages.

    The insights derived from this survey could help policymakers develop strategies to: - Reduce fertility and child marriage by enhancing access to contraceptives and broadening reproductive health education. - Promote women’s empowerment by increasing their participation in economic activities

    This data is valuable for planners who focus on improving living standards, particularly for women. The Ministry of Women, National Solidarity, Family, and Humanitarian Action of Burkina Faso, along with District Authorities, Research Institutions, NGOs, and the general public, stand to benefit from this survey data.

    Geographic coverage

    Burkina Faso, Regions of Boucle du Mouhoun and East

    Analysis unit

    The unit of analysis is adolescent girls for the adolescent survey and households for the household survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    We randomly selected 200 villages from the 11 provinces in the two regions of the Boucle du Mouhoun and the East. The 200 villages were selected proportionally, based on the formula (Np/N)*200, where Np represents the number of eligible villages in the province and N the total number of eligible villages. 25 villages were later dropped because of lack of safety.

    A census was first administered in each village to identify eligible girls and young wives, as well as households with these eligible individuals. All households with at least one eligible person then constituted the universe from which the survey sample was drawn. In total 9857 households and 9382 girls and young wives were sampled. A village-level questionnaire was also administered.

    The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education of household members 3. Occupations of household members 4. Characteristics of housing and durable goods 5. Food security 6. Household head's aspirations, as well as those of a boy aged 12 to 24 7. Opinions on women's empowerment and gender equality

    The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation

    The questionnaire administered at the village-level contains the following sections: 1. Social norms (marriage norms) 2. Ethnic and religious compositions 3. Economic infrastructures (markets and roads) 4. Social services a. Health b. Education

    The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to each eligible pre-selected individual within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The village-level questionnaire was administered to a group of three to five village leaders with enough knowledge of the village. The enumerators were instructed to include women in this group whenever possible. The questionnaires were written in French, translated into the local languages, and programmed on tablets in French using the CAPI program.

    Cleaning operations

    Data was anonymized through decoding and local suppression.

  15. d

    Demographic analysis for article Hurricane-induced demographic changes in a...

    • dataone.org
    • datadryad.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raisa Hernández-Pacheco; Dana O Morcillo; Ulrich K Steiner; Angelina V Ruiz-Lambides; Kristine L Grayson (2025). Demographic analysis for article Hurricane-induced demographic changes in a nonhuman primate population [Dataset]. http://doi.org/10.5061/dryad.5qfttdz2b
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Raisa Hernández-Pacheco; Dana O Morcillo; Ulrich K Steiner; Angelina V Ruiz-Lambides; Kristine L Grayson
    Time period covered
    Jan 1, 2020
    Description

    Major disturbance events can have large impacts on the demography and dynamics of animal populations. Hurricanes are one example of an extreme climatic event, predicted to increase in intensity due to climate change, and thus expected to be a considerable threat to population viability. However, little is understood about the underlying demographic mechanisms shaping population response following these extreme disturbances. Here, we analyze 45 years of the most comprehensive free-ranging nonhuman primate demographic dataset to determine the effects of major hurricanes on the variability and maintenance of long-term population fitness. For this, we use individual-level data to build matrix population models and perform perturbation analyses. Despite reductions in population growth rate mediated through reduced fertility, our study reveals a demographic buffering during hurricane years. As long as survival does not decrease, our study shows that hurricanes do not result in detrimental eff...

  16. d

    Data analysis from: Demographic consequences of changing body size in a...

    • search.dataone.org
    • datadryad.org
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner (2023). Data analysis from: Demographic consequences of changing body size in a terrestrial salamander [Dataset]. http://doi.org/10.5061/dryad.r7sqv9s9r
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner
    Time period covered
    Oct 20, 2021
    Description

    Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size-dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual and population-level demographic effects of changes in body size for a terrestrial salamander using capture-mark-recapture data. For our analysis, we implemented an integral projection model parameterized with capture-recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in indivi..., ,

  17. d

    Data from: The niche through time: Considering phenology and demographic...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun (2024). The niche through time: Considering phenology and demographic stages in plant distribution models [Dataset]. http://doi.org/10.5061/dryad.sn02v6xct
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun
    Description

    Species distribution models (SDMs) are widely used to infer species-environment relationships, predict spatial distributions, and characterise species’ environmental niches. While the importance of space and spatial scales is widely acknowledged in SDM applications, temporal components of the niche are rarely addressed. We discuss how phenology and demographic stages affect model inference in plant SDMs. Ignoring conspicuousness and timing of phenological stages may bias niche estimates through increased observer bias, while ignoring stand age may bias niche estimates through temporal mismatches with environmental variables, especially during times of rapid global warming. We present different methods to consider phenology and demographic stages in plant SDMs, including the selection of causal, spatiotemporally explicit predictors, and the calibration of stage-specific SDMs. Based on a case study with citizen science data, we illustrate how spatiotemporal SDMs provide deeper insights on..., We conducted a keyword-based search in the Web of Science to quantify how often temporal components related to phenology and demographic stages are explicitly considered in plant SDMs. A full list of keywords is provided in the Supporting Information Table S1. We used a nested set of keywords to identify all studies that mentioned SDMs (or common synonyms), were focused on plants, and were listing relevant keywords related to phenology or to demographic stages, respectively. The search was carried out on 5-Oct-2023 and was restricted to English-language journal articles in the period 1945-2022 (no studies using SDMs were published before that start year). Overall, we found more than 40,000 articles mentioning SDM and over 10,000 articles in our refined search for plant SDMs, with a strong increase in the number of articles over time. Among these, phenology (or related search terms) was mentioned in 970 articles and demographic stages (or related terms) in 1188 articles, each averaging c..., , # The niche through time: considering phenology and demographic stages in plant distribution models

    https://doi.org/10.5061/dryad.sn02v6xct

    Description of the data and file structure

    Columns from WoS (Web of Science) search – these are identical in both excel sheets

    These columns are the standard columns provided as WoS search output. If the entries contain "n/a", then no information was provided by WoS because those items are not applicable. For example, a journal article does not have any entries for book authors.

    ColumnExplanation
    Publication TypeType of publication: J .. Journal article
    AuthorsAuthors
    Book AuthorsBook Authors
    Book EditorsBook Editors ...
  18. u

    Data from: Modeling long-term, stage-structured dynamics of Tribolium...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    • +1more
    txt
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sabita Ranabhat; Alison R. Gerken; Deanna Scheff; Kun Yan Zhu; William Morrison (2024). Modeling long-term, stage-structured dynamics of Tribolium castaneum at food facilities with and without two types of long-lasting insecticide netting [Dataset]. http://doi.org/10.15482/USDA.ADC/1529797
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    Ag Data Commons
    Authors
    Sabita Ranabhat; Alison R. Gerken; Deanna Scheff; Kun Yan Zhu; William Morrison
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Insecticide Netting In this study, we focused on two types of long-lasting insecticide netting (LLIN) that have been found to be effective for managing various stored product insect pests. One is an LLIN consisting of a polyethylene netting (2 × 2 mm mesh, D-Terrence, Vestergaard, Inc., Lausanne, Switzerland) with 0.4% deltamethrin active ingredient (a.i.), while the second one is Carifend® net (40 deniers with mesh size 97 knots/cm2; BASF AG, Ludwigshafen, Germany) containing 0.34% α-cypermethrin (a.i.). Foundational Model We used a standard Lefkovitch matrix model to project population growth for Tribolium castaneum, with four life stages (e.g., egg, larva, pupa, and adult;(Lefkovitch,1965). In equation (1), the Leftkovitch matrix L matrix (4 × 4) represents the life-stage structure of T. castaneum which has an egg, larvae, pupae, and an adult, where only the adults contribute to the fecundity, F. By multiplying L with the population vector ni(t), where t is time step (e.g., generation) and i is a life stage, we obtain the resultant vector ni(t + 1), which reveals the distribution of individuals across different life stages in the subsequent time period. In equation (1), P1 represents the probability of staying in the egg stage and G1 is the probability of moving from the egg to the larval stage, P2 is the probability of staying in the larval stage, G2 is probability of moving from the larval stage to pupal stage, P3 is the probability of staying in the pupal stage, G3 is probability of moving from the pupal stage to adult, while P4 is the probability of staying in the adult stage (Figure 1). Model Parameterization and Scenarios We simulated population outcomes for up to 15 generations by using the life table data for T. castaneum using the R package popbio. Survivorship, fecundity, and transition information for each stage were derived from the literature (summarized in Table 1). The developmental duration of eggs, larvae, and pupae were 3.82 ± 0.005, 22.81 ± 0.67, and 6.24 ± 0.071 days (Kollros,1944). The average life duration of the adult used in this study was 221.16 days (Park et al., 1961). We used 94 offspring for fertility from the study Park et al.,(1965) and 99% rate of eclosion from pupae to adult. In order to explore the sensitivity of the base model to changes in mortality and fecundity, both of these parameters were systematically varied from near zero to their maximum value given in the base model (e.g., F = 94, P4 = 0.871). The parameters were varied alone or in combination and the resulting population growth was plotted. All plots were created using ggplot2 (Wickham, 2016) in R software (R Core Team, 2022). Three empirical scenarios from the literature were modeled containing estimates of fecundity reduction only, survivorship reduction only, or both fecundity and survivorship reduction when using LLIN (R.V. Wilkins et al., 2021; Gerken et al., 2021;Scheff et al., 2021, Scheff et al., 2023; Table 2). An individual projection matrix was constructed for each of the three scenarios and combinations of the reductions in fecundity, survivorship, or both. Population growth and proportion in each life stage was projected for 15 generations for each case, including the base model. Overall variation and oscillation were calculated to compare trends among proportion of life stages in each case. In order to compare differences in population sizes between cases for all generations and for generation 15 only, population sizes for each generation were bootstrapped 1000 times to provide iterative replication. The bootstrapped data were then compared one case to another using proc ttest in SAS (Version 9.4) for all generations and for generation 15 only. In addition, a sensitivity analysis was performed to determine which stage should be targeted to most greatly affect the population growth after exposure to the netting. Moreover, a mortality function based on empirical data with LLIN exposure collected in the laboratory on T. castaneum was implemented. The three scenarios are derived from: Gerken, A. R., J. F. Campbell, S. R. Abts, F. Arthur, W. R. Morrison, and D. S. Scheff. 2021. “Long-Lasting Insecticide-Treated Netting Affects Reproductive Output and Mating Behavior in Tribolium castaneum (Coleoptera: Tenebrionidae) and Trogoderma variabile (Coleoptera: Dermestidae).” Edited by Rizana Mahroof. Journal of Economic Entomology 114 (6): 2598–2609. https://doi.org/10.1093/jee/toab204. Scheff, D. S., A. R. Gerken, W. R. Morrison, J. F. Campbell, F. H. Arthur, and K. Y. Zhu. 2021. “Assessing Repellency, Movement, and Mortality of Three Species of Stored Product Insects after Exposure to Deltamethrin-Incorporated Long-Lasting Polyethylene Netting.” Journal of Pest Science 94 (3): 885–98. https://doi.org/10.1007/s10340-020-01326-3. Wilkins, R.V., J.F. Campbell, K.Y. Zhu, L.A. Starkus, T. McKay, and W.R. Morrison. 2021. “Long-Lasting Insecticide-Incorporated Netting and Interception Traps at Pilot-Scale Warehouses and Commercial Facilities Prevents Infestation by Stored Product Beetles.” Frontiers in Sustainable Food Systems 4: https://doi.org/10.3389/fsufs.2020.561820. Resources in this dataset:

    Resource Title: Script for Modeling of LLIN effects on T. castaneum MS File Name: ranabhat_etal_modeling_MS_r_script_final_agdata_commons.R

  19. f

    Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Man-Yee Kan; Kamila Kolpashnikova (2023). Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and Housework Share in 24 Countries.pdf [Dataset]. http://doi.org/10.3389/fsoc.2021.700301.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Man-Yee Kan; Kamila Kolpashnikova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How does the association between gender attitudes and housework share vary across countries and time? We examine the second demographic transition as it unmasks in the association between gender attitudes and housework participation. Using data of the 2002 and 2012 International Social Survey Programme (ISSP) for 24 countries, we find that the association between gender attitudes and housework share became stronger over time in most countries, signifying that the Second Demographic Transition was in place. The results also show that the association varied across the 24 countries, reaching an equilibrium in many but at different stages. Our findings suggest that equilibria in the domestic division of labour take various forms and paces in the ISSP countries.

  20. Data from: Demographic Processes in England and Wales, 1851-1911: Data and...

    • beta.ukdataservice.ac.uk
    Updated 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D. Friedlander; B. S. Okun (2007). Demographic Processes in England and Wales, 1851-1911: Data and Model Estimates [Dataset]. http://doi.org/10.5255/ukda-sn-5587-1
    Explore at:
    Dataset updated
    2007
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    D. Friedlander; B. S. Okun
    Area covered
    England
    Description

    The aims of the project were to examine and analyse demographic processes of fertility, nuptiality, marital fertility, mortality and migration during periods encompassing the demographic transition in England and Wales. In particular, the goal was to reveal underlying relationships between demographic processes in the context of changing socio-economic conditions. With this goal in mind, population, occupational, and education data were compilated, and demographic and statistical models were employed to estimate key measures and indicators of demographic change. The large majority of the data and estimates were compiled and made at the registration district level for the period 1851-1911. In addition decennial inter-county migration flows were estimated for the period 1851-1911.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d

Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Service
Description

This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

Search
Clear search
Close search
Google apps
Main menu