46 datasets found
  1. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  2. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Florida International University
    University of Hawaiʻi at Mānoa
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  3. Fertility rate of the world and continents 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.statista.com/statistics/1034075/fertility-rate-world-continents-1950-2020/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around 5 children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have 5 or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  4. Total fertility rate worldwide 1950-2100

    • ai-chatbox.pro
    • statista.com
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total fertility rate worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F805064%2Ffertility-rate-worldwide%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.

  5. o

    Data from: Accounting for uncertainty in dormant life stages in stochastic...

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Oct 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Paniw; Pedro F. Quintana-Ascencio; Fernando Ojeda; Roberto Salguero-Gómez (2016). Data from: Accounting for uncertainty in dormant life stages in stochastic demographic models [Dataset]. http://doi.org/10.5061/dryad.rq7t3
    Explore at:
    Dataset updated
    Oct 11, 2016
    Authors
    Maria Paniw; Pedro F. Quintana-Ascencio; Fernando Ojeda; Roberto Salguero-Gómez
    Description

    dataDroso - census dataDemographic transitions of Drosophyllum lusitanicum populations recorded in annual censuses (from 2011 to 2015) in five populations. These data are used to quantify vital rates of above-ground individuals.dataDroso.csvdataDrosoSB - seed bankSeed fates (in a binary format) inferred from two experiments. These data are used to quantify the transitions related to the seed bank and associated parameter uncertainties.dataDrosoSB.csvBayModel - Bayesian vital rate GLMMsExecutes and saves the results of a Bayesian model quantifying all vital rates; illustrates basic diagnostics that can be run on the results of an MCMC run (i.e., the posterior parameter distribution) to check for model convergence and autocorrelation of the posterior samples.BayModel.RmcmcOUT - parameter samplesIn case the reader wishes to forego the step of fitting the Bayesian models, we provided a mcmcOUT.csv file with 1000 posterior parameter values for each of the parameters estimated with Bayesian models using uninformative priorsmcmcOUT.csvmakeIPMDemonstrates how to construct IPMs including continuous and discrete (seed bank) transitions for (A) mean parameter values and (B) from the parameter distributions of the Bayesian models; saves IPMs for all parameters related to seed-bank ingression, stasis, and ingression. The code is based on the supporting material in Ellner and Rees (2006), Am. Nat., 167, 410-428perturbVR - vital rate perturbationsDemonstrates how to construct IPMs from perturbed vital rates. Each IPM is obtained by (a) perturbing a vital rate by its mean or standard deviation (see makeVRmu.R on constructing mean vital-rate kernels) and (b) constructing a new IPM kernel incorporating the perturbed vital rateperturbVR.RmakeIPMmufunction to constructs IPMs for average environmentsmakeVRmufunctions to constructs vital-rate kernels for average environments.sLambdaSimul - stochastic lambda simulationsRuns simulations, based on different fire return intervals, of the stochastic population growth rate using IPMs constructed (A) from mean parameter values, (B) from perturbed vital rates, and (C) for each posterior sample of the parameters describing seed-bank ingression (goSB), stasis (staySB) and egression (outSB); calculates the stochastic population growth rate, its elasticities, and the probability of quasi-extinction at time t. The structure of the code is based on Tuljapurkar et al. (2003), Am. Nat., 162, 489-502 and Trotter et al. (2013), Methods Ecol. Evol., 4, 290-298.sLambdaSimul.RsLambdaRmpi - stochastic simulations on parallel processorsImplements the simulations of the stochastic population growth rate using parallel processing, where simulations are split into different processors of a supercomputer to greatly speed up computational time.sLambdaRmpi.R Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these stages, which then may propagate errors in the examination of population-level responses to environmental variation. Expanding on current methods, we 1) apply data-driven approaches to estimate parameter uncertainty in vital rates of dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We built integral projection models (IPMs) for a fire-adapted, carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of three vital rates of dormant seeds – seed-bank ingression, stasis and egression. We used stochastic population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate (log λs) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three seed-bank vital rates and assessed how strongly their parameter uncertainty propagated into uncertainty in estimates of log λs and the probability of quasi-extinction, Pq(t). Elasticity analyses indicated that changes in seed-bank stasis and egression had large effects on log λs across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained > 50% of the variation in log λs estimates at several fire-return intervals. Inferences about population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of population viability.

  6. d

    Data from: The niche through time: Considering phenology and demographic...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun (2024). The niche through time: Considering phenology and demographic stages in plant distribution models [Dataset]. http://doi.org/10.5061/dryad.sn02v6xct
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun
    Description

    Species distribution models (SDMs) are widely used to infer species-environment relationships, predict spatial distributions, and characterise species’ environmental niches. While the importance of space and spatial scales is widely acknowledged in SDM applications, temporal components of the niche are rarely addressed. We discuss how phenology and demographic stages affect model inference in plant SDMs. Ignoring conspicuousness and timing of phenological stages may bias niche estimates through increased observer bias, while ignoring stand age may bias niche estimates through temporal mismatches with environmental variables, especially during times of rapid global warming. We present different methods to consider phenology and demographic stages in plant SDMs, including the selection of causal, spatiotemporally explicit predictors, and the calibration of stage-specific SDMs. Based on a case study with citizen science data, we illustrate how spatiotemporal SDMs provide deeper insights on..., We conducted a keyword-based search in the Web of Science to quantify how often temporal components related to phenology and demographic stages are explicitly considered in plant SDMs. A full list of keywords is provided in the Supporting Information Table S1. We used a nested set of keywords to identify all studies that mentioned SDMs (or common synonyms), were focused on plants, and were listing relevant keywords related to phenology or to demographic stages, respectively. The search was carried out on 5-Oct-2023 and was restricted to English-language journal articles in the period 1945-2022 (no studies using SDMs were published before that start year). Overall, we found more than 40,000 articles mentioning SDM and over 10,000 articles in our refined search for plant SDMs, with a strong increase in the number of articles over time. Among these, phenology (or related search terms) was mentioned in 970 articles and demographic stages (or related terms) in 1188 articles, each averaging c..., , # The niche through time: considering phenology and demographic stages in plant distribution models

    https://doi.org/10.5061/dryad.sn02v6xct

    Description of the data and file structure

    Columns from WoS (Web of Science) search – these are identical in both excel sheets

    These columns are the standard columns provided as WoS search output. If the entries contain "n/a", then no information was provided by WoS because those items are not applicable. For example, a journal article does not have any entries for book authors.

    ColumnExplanation
    Publication TypeType of publication: J .. Journal article
    AuthorsAuthors
    Book AuthorsBook Authors
    Book EditorsBook Editors ...
  7. A

    IDPH Population Projections 2014 Edition

    • data.amerigeoss.org
    • data.wu.ac.at
    csv, json, rdf, xml
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). IDPH Population Projections 2014 Edition [Dataset]. https://data.amerigeoss.org/dataset/population-projections-2014-edition
    Explore at:
    xml, rdf, csv, jsonAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    Description

    Introduction

    This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends.

    Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years).

    Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates.

    Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period.

    Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health.

    Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group.

    Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods.

    Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.

  8. Total population of the BRICS countries 2000-2030

    • ai-chatbox.pro
    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F9896%2Fchina-statista-dossier%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  9. a

    Demographic change 2010 - 2023 (all geographies, statewide)

    • arc-garc.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic change 2010 - 2023 (all geographies, statewide) [Dataset]. https://arc-garc.opendata.arcgis.com/maps/f70f4d7defb94a20987e59061b012bbe
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  10. Countries with the largest population 2025

    • statista.com
    • ai-chatbox.pro
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

  11. f

    Prevalence and patterns of multi-morbidity among 30-69 years old population...

    • figshare.com
    xls
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohini; Panniyammakal Jeemon (2020). Prevalence and patterns of multi-morbidity among 30-69 years old population of rural Pathanamthitta, a district of Kerala, India: A cross-sectional study [Dataset]. http://doi.org/10.6084/m9.figshare.12494681.v4
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    figshare
    Authors
    Rohini; Panniyammakal Jeemon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pathanamthitta, India, Kerala
    Description

    Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.

    Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.

    Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.

    Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.

    Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern

  12. o

    Data from: Population responses to perturbations: the importance of...

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Jan 9, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton (2012). Data from: Population responses to perturbations: the importance of trait-based analysis illustrated through a microcosm experiment [Dataset]. http://doi.org/10.5061/dryad.68sd84vh
    Explore at:
    Dataset updated
    Jan 9, 2012
    Authors
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton
    Description

    Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. Daily sampling of individual mitesday: day of the study (day t) | no: individual ID for each day | surv: survival to day t+1? | stage: life-history stage at day t | stage1: life-history stage at day t+1 | trns: transition to next stage at day t+1? | tsex: transition to female stage at day t+1? | dens: weighted population density at day t | size: log(body size) at day t | size1: log(body size) at day t+1 | rep: produced eggs at day t+1? | rec: number of eggs produced on day t+1 | day2: number of eggs hatched on day t+2 | day3: number of eggs hatched on day t+3 | day4: number of eggs hatched on day t+4 | day5: number of eggs hatched on day t+5 | day6: number of eggs hatched on day t+6 | day7: number of eggs hatched after day t+6 | eggsurv: proportion of eggs hatched | hrate: daily hatching rate | eggsize: average log(egg size)ind_data.csvAdditional experiment measuring egg-to-larva size transitioneggSize: log(egg size) | larvaSize: log(larva size)egg_data.csvDaily population censusday: day of the study (day t) | e: number of eggs | l: number of larvae | p: number of protonymphs | t: number of tritonymphs | f: number of female adults | m: number of male adults | group: (c)ontrol or (s)ample group? | dens: weighted population densitypop_census.csv

  13. d

    Data from: Georeferenced U.S. County-Level Population Projections, Total and...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 [Dataset]. https://catalog.data.gov/dataset/georeferenced-u-s-county-level-population-projections-total-and-by-sex-race-and-age-b-2020
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    United States
    Description

    The Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 consists of county-level population projection scenarios of total population, and by age, sex, and race in five-year intervals for all U.S. counties for the period 2020 - 2100. These data have numerous potential uses and can serve as inputs for addressing questions involving sub-national demographic change in the United States in the near, middle- and long-term.

  14. a

    Total Population SSPs

    • maps-cadoc.opendata.arcgis.com
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2023). Total Population SSPs [Dataset]. https://maps-cadoc.opendata.arcgis.com/maps/arcgis-content::total-population-ssps
    Explore at:
    Dataset updated
    Apr 27, 2023
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shares SEDAC's population projections for U.S. counties for 2020-2100 in increments of 5 years, for each of five population projection scenarios known as Shared Socioeconomic Pathways (SSPs). This layer supports mapping, data visualizations, analysis and data exports.Before using this layer, read:The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview by Keywan Riahi, Detlef P. van Vuuren, Elmar Kriegler, Jae Edmonds, Brian C. O’Neill, Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko, Wolfgang Lutz, Alexander Popp, Jesus Crespo Cuaresma, Samir KC, Marian Leimbach, Leiwen Jiang, Tom Kram, Shilpa Rao, Johannes Emmerling, Kristie Ebi, Tomoko Hasegawa, Petr Havlik, Florian Humpenöder, Lara Aleluia Da Silva, Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jessica Strefler, Laurent Drouet, Volker Krey, Gunnar Luderer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baumstark, Jonathan C. Doelman, Mikiko Kainuma, Zbigniew Klimont, Giacomo Marangoni, Hermann Lotze-Campen, Michael Obersteiner, Andrzej Tabeau, Massimo Tavoni. Global Environmental Change, Volume 42, 2017, Pages 153-168, ISSN 0959-3780, https://doi.org/10.1016/j.gloenvcha.2016.05.009.From the 2017 paper: "The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature."According to SEDAC, the purpose of this data is:"To provide subnational (county) population projection scenarios for the United States essential for understanding long-term demographic changes, planning for the future, and decision-making in a variety of applications."According to Francesco Bassetti of Foresight, "The SSP’s baseline worlds are useful because they allow us to see how different socioeconomic factors impact climate change. They include: a world of sustainability-focused growth and equality (SSP1); a “middle of the road” world where trends broadly follow their historical patterns (SSP2); a fragmented world of “resurgent nationalism” (SSP3); a world of ever-increasing inequality (SSP4);a world of rapid and unconstrained growth in economic output and energy use (SSP5).There are seven sublayers, each with county boundaries and an identical set of attribute fields containing projections for these seven groupings across the five SSPs and nine decades.Total PopulationBlack Non-Hispanic PopulationWhite Non-Hispanic PopulationOther Non-Hispanic PopulationHispanic PopulationMale PopulationFemale PopulationMethodology: Documentation for the Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Data currency: This layer was created from a shapefile downloaded April 18, 2023 from SEDAC's Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Enhancements found in this layer: Every field was given a field alias and field description created from SEDAC's Data Dictionary downloaded April 18, 2023. Citation: Hauer, M., and Center for International Earth Science Information Network - CIESIN - Columbia University. 2021. Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/dv72-s254. Accessed 18 April 2023.Hauer, M. E. 2019. Population Projections for U.S. Counties by Age, Sex, and Race Controlled to Shared Socioeconomic Pathway. Scientific Data 6: 190005. https://doi.org/10.1038/sdata.2019.5.Distribution Liability: CIESIN follows procedures designed to ensure that data disseminated by CIESIN are of reasonable quality. If, despite these procedures, users encounter apparent errors or misstatements in the data, they should contact SEDAC User Services at +1 845-465-8920 or via email at ciesin.info@ciesin.columbia.edu. Neither CIESIN nor NASA verifies or guarantees the accuracy, reliability, or completeness of any data provided. CIESIN provides this data without warranty of any kind whatsoever, either expressed or implied. CIESIN shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided by CIESIN.

  15. Expected demographic and genetic declines not found in most zoo and aquarium...

    • figshare.com
    txt
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Judy Che-Castaldo (2021). Expected demographic and genetic declines not found in most zoo and aquarium populations: Supplement [Dataset]. http://doi.org/10.6084/m9.figshare.11845518.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 12, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Judy Che-Castaldo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1) BTN_publish.R: R code for summarizing recent plan data, random forest analysis of trends by predictor variables, and creating figures for publication2) BTN_Bayes_publish.R: R code for Bayesian modeling to estimate change in demographic and genetic metrics over time3) recentprogramsdat_anon.csv: anonymized data from most recent breeding and transfer plans for each Program, used in (1)4) BayesAnalysis_anon: anonymized trend results from Bayesian models and trait data, used in (1)5) initNmat_anon.csv: anonymized Program-level data for modeling slopes, used in (2)6) plotdat_anon.csv: anonymized plan-level data for modeling slopes, used in (2)7) WebTable5_PMCTrack_slopes.html: table with the model estimated slopes for seven demographic and genetic metrics for all Programs, as described in WebPanel1

  16. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    • +1more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  17. Fertility rate of the BRICS countries 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the BRICS countries 2023 [Dataset]. https://www.statista.com/statistics/741645/fertility-rate-of-the-bric-countries/
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Africa, Russia
    Description

    While the BRICS countries are grouped together in terms of economic development, demographic progress varies across these five countries. In 2019, India and South Africa were the only BRICS countries with a fertility rate above replacement level (2.1 births per woman). Fertility rates since 2000 show that fertility in China and Russia has either fluctuated or remained fairly steady, as these two countries are at a later stage of the demographic transition than the other three, while Brazil has reached this stage more recently. Fertility rates in India are following a similar trend to Brazil, while South Africa's rate is progressing at a much slower pace. Demographic development is inextricably linked with economic growth; for example, as fertility rates drop, female participation in the workforce increases, as does the average age, which then leads to higher productivity and a more profitable domestic market.

  18. Years taken for the world population to grow by one billion 1803-2088

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Years taken for the world population to grow by one billion 1803-2088 [Dataset]. https://www.statista.com/statistics/1291648/time-taken-for-global-pop-grow-billion/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1803 - 2015
    Area covered
    World
    Description

    Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.

  19. d

    Data from: Demographic mechanisms and anthropogenic drivers of contrasting...

    • dataone.org
    • borealisdata.ca
    Updated Jan 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    English, Simon; Wilson, Scott; Zhao, Qing; Bishop, Christine; Moran, Alison (2024). Demographic mechanisms and anthropogenic drivers of contrasting population dynamics of hummingbirds [Dataset]. http://doi.org/10.5683/SP3/LR2Y4C
    Explore at:
    Dataset updated
    Jan 13, 2024
    Dataset provided by
    Borealis
    Authors
    English, Simon; Wilson, Scott; Zhao, Qing; Bishop, Christine; Moran, Alison
    Description

    AbstractConserving species requires knowledge of demographic rates (survival, recruitment) that govern population dynamics to allow the allocation of limited resources to the most vulnerable stages of target species' life cycles. Additionally, quantifying drivers of demographic change facilitates the enactment of specific remediation strategies. However, knowledge gaps persist in how similar environmental changes lead to contrasting population dynamics through demographic rates. For sympatric hummingbird species, the population of urban-associated partial-migrant Anna's hummigbird (Calypte anna) has increased, yet the populations of Neotropical migrants including rufous, calliope, and black-chinned hummingbirds have decreased. Here, we developed an integrated population model to jointly analyze 25 years of mark-recapture data and population survey data for these four species. We examined the contributions of demographic rates on population growth and evaluated the effects of anthropogenic stressors including human population density and crop cover on demographic change in relation to species' life histories. While recruitment appeared to drive the population increase of urban-associated Anna's hummingbirds, decreases in juvenile survival contributed most strongly to population declines of Neotropical migrants and highlight a potentially vulnerable phase in their life-history. Moreover, rufous hummingbird adult and juvenile survival rates were negatively impacted by human population density. Mitigating threats associated with intensively modified anthropogenic environments is a promising avenue for slowing further hummingbird population loss. Overall, our model grants critical insight into how anthropogenic modification of habitat affects the population dynamics of species of conservation concern. MethodsThis R data file contains a named list for each species in our study. It has been processed to remove covariates and data that are not public domain but are available for download at the links provided (indicated with * in the readme file). Each species list contains mark-recapture records (y), the known-state records (z), number of years spanned by the analysis (n.years), numbers banded individuals (n.ind), banding station membership (sta), number of banding stations (n.sta), year of first encounter for each individual (first), year of last possible encounter of each individual if it were to be alive (last), first and last years of mark recapture data (first_yr / last_yr), sex (1 = male, 2 = female) and age (1 = juvenile, 2 = adult) membership for each individual, the observed residency information for each individual in each year (r), the partially observed residency state information for each individual (u), the standardized human population density and crop data in the 3 kilometers around each banding station (HPD / crop), the unstandardized HPD and crop data (HPD_raw / crop_raw), the number of days of operational banding activity at each station each year (effort), and indicator for each station and year signifying whether banding occurred on at least two occasions separated by more than 5 days that year (kappa_shrink), the BBS survey year (year), an indicator of whether the BBS surveyor was suveying on their first year or not (firstyr), the number of BBS surveys (ncounts), the species tally on a given survey (count), the number of individual transects surveyed over the study period (nrte), the BBS transect membership for each count (rte), the number of observers contributing data over the study period (nobserver), the anonymized observer ID on a given transect for each count (rte.obser), and the initial abundance estimate given as the mean count across all transects and years, inflated by 100 for precise estimation of demographic rates (lam0). Usage notesData can be opened in R and analyzed using Nimble.

  20. Community characteristics of forest understory birds along an elevational...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated May 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kyle Kittelberger; Montague Neate-Clegg; Evan Buechley; Çağan Şekercioğlu (2021). Community characteristics of forest understory birds along an elevational gradient in the Horn of Africa: A multi-year baseline of Afromontane birds [Dataset]. http://doi.org/10.5061/dryad.2z34tmpkw
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2021
    Dataset provided by
    Smithsonian Migratory Bird Center
    University of Utah
    Authors
    Kyle Kittelberger; Montague Neate-Clegg; Evan Buechley; Çağan Şekercioğlu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Horn of Africa, Africa
    Description

    Tropical mountains are global hotspots for birdlife. However, there is a dearth of baseline avifaunal data along eleva-tional gradients, particularly in Africa, limiting our ability to observe and assess changes over time in tropical montane avian communities. In this study, we undertook a multi-year assessment of understory birds along a 1,750 m elevational gradient (1,430-3,186 m) in an Afrotropical moist evergreen montane forest within Ethiopia's Bale Mountains. Analyzing 6 years of systematic bird-banding data from 5 sites, we describe the patterns of species richness, abundance, community composition, and demographic rates over space and time. We found bimodal patterns in observed and estimated species richness across the elevational gradient (peaking at 1,430 and 2,388 m), although no sites reached asymptotic species richness throughout the study. Species turnover was high across the gradient, though forested sites at mid-elevations resembled each other in species composition. We found significant variation across sites in bird abundance in some of the dietary and habitat guilds. However, we did not find any significant trends in species richness or guild abundances over time. For the majority of analyzed species, capture rates did not change over time and there were no changes in species' mean elevations. Population growth rates, recruitment rates, and apparent survival rates averaged 1.02, 0.52, and 0.51 respectively, and there were no elevational patterns in demographic rates. This study establishes a multi-year baseline for Afrotropical birds along an elevational gradient in an under-studied international biodiversity hotspot. These data will be critical in assessing the long-term responses of tropical montane birdlife to climate change and habitat degradation.

    Methods Statistical Analyses

    Community-level Analyses

    To test whether our survey effort had adequately surveyed the local bird community, we calculated rarified species accumulation curves across sampling days for each site, based on observed and expected (sample-based rarefaction) species richness (Colwell et al. 2012) using the “exact” method of the specaccum function from the R package VEGAN (Oksanen et al. 2019). Since our species accumulation curves did not reach asymptotes for species richness, observed species richness likely does not capture true species richness. We, therefore, used sample-size-based rarefaction and extrapolation (R/E) of Hill numbers (the effective number of species, which integrates species richness and relative abundances; Chao et al. 2014). Sample-size-based rarefaction and extrapolation of Hill numbers is an emerging approach used to standardize and compare estimates of diversity between samples (see Cox et al. 2017, Fair et al. 2018, Baumel et al. 2018, Chao et al. 2019, Debela et al. 2020). Specifically, we used this framework to estimate two values of Hill number 0 (i.e. estimated species richness). First, we calculated standardized species richness. We used the function iNEXT from the R package iNEXT (Hsieh et al. 2016) to calculate R/E curves, standardizing our curve parameters to a maximum of 1,000 individual bird captures (endpoint = 1,000), knots = 500, and a bootstrap replication of 1,000 (nboot = 1,000). From these curves, we provide standardized estimates of species richness based on the sampling of 1,000 individuals at each site. We also estimated asymptotic species richness using the function ChaoRichness from the package iNEXT (Hsieh et al. 2016). Although the asymptotic species richness is an estimate of true species richness, in practice, reaching an asymptote can take a long time and a lot of sampling. We then plotted the R/E curves of standardized species richness (i.e. over 1,000 individuals) for each site as a function of sample size using the function ggiNEXT (Hsieh et al. 2016). We also visualized asymptotic species richness by setting the endpoint of the iNEXT function to 10,000 individuals.

    Next, we assessed the spatial and temporal patterns in observed species richness and guild-specific captures. For guild-specific captures, we identified the primary diet and habitat association of each species using a global dataset of avian ecological traits (Table 1; see Şekercioğlu et al. 2004, 2019 for a description of the dataset) and summed captures for each separate guild based on either primary diet or habitat. We restricted our analyses to guilds that had ≥40 captures and ≥5 species over the study period and modeled each guild independently. We chose a ≥40 capture threshold as our cutoff between infrequently and frequently encountered species. Most species above this threshold were recorded each year and more than once or twice in each year (the few species that were not recorded each year were recorded multiple times in the other years), whereas individuals under this threshold tended to have few captures across more than one year. We chose a ≥5 species threshold for the guild models to ensure that results for these metrics represented more than a few species.

    We constructed models comparing each response variable (observed species richness, dietary, and habitat guild-specific captures) as a function of the site, and included the number of survey days per site and year (Table 2) as a covariate to control for the variation in the sampling effort. We used generalized linear models (GLMs) for species richness and guild-specific captures, as these represent count data. Within the GLMs, we used a Poisson error structure for species richness, and for guild-specific captures, we used a quasi-Poisson error structure to account for over-dispersion in the count data. To assess changes in the bird community over time, we ran an additional model for each response variable that contained year and site, with a year * site interaction (error structures were applied as above). We tested the significance of the explanatory variables in the GLMs with an analysis of deviance.

    We assessed species dissimilarity between sites along the elevational gradient by calculating the Sørenson dissimilarity index (S8) for pairs of sites adjacent to each other along the elevational gradient, as well as for Chiri-1430 and Dinsho-3186 at either end of the gradient. S8 can range from complete dissimilarity (S8 = 1) to complete similarity (S8 = 0). This dissimilarity can be further decomposed into turnover and nestedness, which we calculated using the function beta.pair in the package betapart (Baselga et al. 2020). Finally, to compare community composition (captures of different species, weighted by abundance), we ran a Principal Coordinate Analysis (PCoA) based on a Bray-Curtis dissimilarity matrix (Legendre and Legendre 2012). A PCoA extracts the greatest orthogonal axes of variation in community composition, plotting them in multidimensional space such that more similar communities are closer to each other in Euclidean space. We extracted the first two axes from the PCoA that represent the greatest variation in community composition.

    Species-level Analyses

    As a proxy for species abundance (Dulle et al. 2016), we calculated species-specific captures (the number of captured and recaptured individuals of a particular species) per site and year for the most frequently-captured species (≥ 40 captures over the study period). To assess the variation in species’ elevational distributions, we calculated the mean elevation at which each species was detected each year (hereafter “mean elevation”) for frequently-captured species that were detected at least once in every year of the study. Smaller range shifts in tropical birds are more detectable when analyzing mean elevational occurrence rather than the changes in upper or lower range boundaries, as the position of range boundaries is strongly dependent on the sampling effort (Shoo et al. 2006).

    We regressed both species-specific captures (in a GLM with a quasi-Poisson error structure) and mean elevation (in a simple linear model) against year. Since the Dinsho-3186 site was located far from the other sites, we decided to re-run the species-level analyses with Dinsho-3186 data removed. The results remained similar with Dinsho-3186 excluded (Supplemental Material Tables S2 and S3) and, therefore, we retained Dinsho-3186 data in the analyses to increase our statistical power. Additionally, we compared our elevational records for banded birds with those reported in the literature for Ethiopia and the Horn of Africa (Ash and Atkins 2009, Dowsett and Dowsett-Lemaire 2015, Rannestad 2016) in order to assess whether any species were detected outside of their recorded elevational distributions. We used an elevational difference of at least 150 m to indicate whether a species had clearly been recorded in our study higher or lower than previously reported in Ethiopia, a distance previously used to signify extralimital records of birds in Ethiopia (Dowsett and Dowsett-Lemaire 2015). A difference of <150 m could result from chance, whereas a difference >150 m is more likely to result from a systematic change in the elevational range.

    At the population level, we used Pradel models (Pradel 1996) implemented with the package RMark (Laake and Rexstad 2012) to estimate the rates of apparent survival (φ), recruitment (F), and realized population growth (λ) while controlling for encounter probabilities (p). φ is the rate at which individuals remain in the population; F is the rate at which new individuals join the population via birth or immigration; and λ is the combined effect of survival and recruitment. A population does not change in size when λ = 1, declines when λ <1, and grows when λ >1. These mark-recapture models cannot distinguish movement in and out of a study area (immigration/emigration) from true birth and survival. However, birds living in tropical mountains are known to have small range sizes (Orme et al. 2006), and tropical

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d

Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Service
Description

This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

Search
Clear search
Close search
Google apps
Main menu