69 datasets found
  1. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  2. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    University of Hawaiʻi at Mānoa
    Florida International University
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  3. d

    Demography of American black bears (Ursus americanus) in a semiarid...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk (2025). Demography of American black bears (Ursus americanus) in a semiarid environment [Dataset]. http://doi.org/10.5061/dryad.98sf7m0t8
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk
    Area covered
    United States
    Description

    The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adu..., Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearling..., , # Demography of American black bears (Ursus americanus) in a semiarid environment

    https://doi.org/10.5061/dryad.98sf7m0t8

    Description of the data and file structure

    Files and variables

    File: Age-Specific_Survivorship.csv

    Description:Â

    This CSV file contains data collected from a mark-recapture study during 1991 - 2019. We calculated the age-specific average survival rate for each cohort. The average survival rate of each cohort was later used in the matrix transition model as matrix elements to retrieve important demographic information about this population of North American black bears (Ursus americanus) found in a semiarid environment.Â

    Variables
    • Cohort:Â Yearling = 1 year to 2 years;Â Subadult = 2 years to 4 years;Â Prime-aged Adult = 4 years to 14 years;Â Old Adult = 15 years and older.
    • Sex:Â M = male; F = female; U = unknown
    • Cubs and Yearlings:Â NV = not visited; number = number of cubs or yearlings presen...
  4. f

    Data from: Dynamic interplay of kinship and net-fertility: a comprehensive...

    • tandf.figshare.com
    docx
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roxana Arana-Ovalle; Lisa Dillon; Alejandro Murua; Francisco José Zamudio-Sánchez (2025). Dynamic interplay of kinship and net-fertility: a comprehensive analysis across demographic transitions in Mexico [Dataset]. http://doi.org/10.6084/m9.figshare.29370934.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Roxana Arana-Ovalle; Lisa Dillon; Alejandro Murua; Francisco José Zamudio-Sánchez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study explores the relationship between grandparental co-residence and net fertility – measured as the number of children under five – in Mexico across three key phases of its demographic transition: 1930 (pre-transitional), 1970 (population growth), and 2015 (fertility decline). Using census microdata and Poisson and multinomial regression models, we assess how intergenerational household structures interact with family socioeconomic status and cultural context to influence fertility outcomes. A central innovation is the use of a reconstructed 10% sample of the 1930 census, complemented by an imputation strategy to infer kinship ties not recorded in the original data. This enabled one of the earliest large-scale analyses of family co-residence and reproduction in historical Mexico. Findings reveal that the effects of grandparental co-residence vary by context. In 1930, cohabitation with grandmothers – especially in rural indigenous households – was associated with lower fertility, while cohabitation with grandfathers in non-indigenous rural areas corresponded to higher fertility. In 1970, amid pronatalist policies and economic growth, these effects weakened overall but persisted modestly in rural contexts. By 2015, co-residence – particularly with both grandparents – was associated with higher fertility and lower variability in fertility (CV), suggesting a stabilizing role in reproductive behavior. In contrast, households without grandparents exhibited lower fertility and greater heterogeneity, appearing to lead the shift toward reduced fertility. These findings illustrate how extended family structures both reflect and shape reproductive adaptation across shifting demographic contexts. By integrating evolutionary concepts such as cooperative breeding and social learning biases, the study offers insight into how kin networks can either support or constrain fertility depending on historical, socioeconomic, and cultural conditions. In doing so, it also contributes methodologically by addressing the complexity of nested and interactive effects – an essential step for understanding fertility dynamics in culturally diverse populations undergoing demographic transformation.

  5. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  6. f

    Data Paper. Data Paper

    • wiley.figshare.com
    html
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martha M. Ellis; Jennifer L. Williams; Peter Lesica; Timothy J. Bell; Paulette Bierzychudek; Marlin Bowles; Elizabeth E. Crone; Daniel F. Doak; Johan Ehrlén; Albertine Ellis-Adam; Kathryn McEachern; Rengaian Ganesan; Penelope Latham; Sheila Luijten; Thomas N. Kaye; Tiffany M. Knight; Eric S. Menges; William F. Morris; Hans den Nijs; Gerard Oostermeijer; Pedro F. Quintana-Ascencio; J. Stephen Shelly; Amanda Stanley; Andrea Thorpe; Tamara Ticktin; Teresa Valverde; Carl W. Weekley (2023). Data Paper. Data Paper [Dataset]. http://doi.org/10.6084/m9.figshare.3553086.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Wiley
    Authors
    Martha M. Ellis; Jennifer L. Williams; Peter Lesica; Timothy J. Bell; Paulette Bierzychudek; Marlin Bowles; Elizabeth E. Crone; Daniel F. Doak; Johan Ehrlén; Albertine Ellis-Adam; Kathryn McEachern; Rengaian Ganesan; Penelope Latham; Sheila Luijten; Thomas N. Kaye; Tiffany M. Knight; Eric S. Menges; William F. Morris; Hans den Nijs; Gerard Oostermeijer; Pedro F. Quintana-Ascencio; J. Stephen Shelly; Amanda Stanley; Andrea Thorpe; Tamara Ticktin; Teresa Valverde; Carl W. Weekley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List Species_Information.txt – Species data for all studies, including study details, limited life history characteristics, and species descriptions. ASCII text, tab delimited, 20 lines (not including header row), 5 KB. (md5: 3aaff18b97d15ab45fe2bba8f721d20c) Population_data.txt – Details on population locations, habitats, and observed population status at study end and revisit. ASCII text, tab delimited, 82 lines (not including header row), 8 KB. (md5: 73d9b38e52661829d3aea635498922a3) Transition_Matrices.txt – Annual transition matrices and observed stage structures for each population and year of study. ASCII text, tab delimited, 461 lines (not including header row), 249 KB. (md5: f0a49ea65b58c92c5675f629f3589517)Description Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the ‘Testing Matrix Models’ working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with > 460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics. Key words: conservation; Demographic matrix models; ecological forecasting; extinction risk; matrix population models; plant population dynamics; population growth rate.

  7. Countries with the highest fertility rates 2025

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest fertility rates 2025 [Dataset]. https://www.statista.com/statistics/262884/countries-with-the-highest-fertility-rates/
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.

  8. Countries with the largest population 2025

    • statista.com
    • tokrwards.com
    • +1more
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

  9. f

    Demography of the Early Neolithic Population in Central Balkans: Population...

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marko Porčić; Tamara Blagojević; Sofija Stefanović (2023). Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions [Dataset]. http://doi.org/10.1371/journal.pone.0160832
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Marko Porčić; Tamara Blagojević; Sofija Stefanović
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Balkans
    Description

    The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC). These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis.

  10. f

    Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Man-Yee Kan; Kamila Kolpashnikova (2023). Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and Housework Share in 24 Countries.pdf [Dataset]. http://doi.org/10.3389/fsoc.2021.700301.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Man-Yee Kan; Kamila Kolpashnikova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How does the association between gender attitudes and housework share vary across countries and time? We examine the second demographic transition as it unmasks in the association between gender attitudes and housework participation. Using data of the 2002 and 2012 International Social Survey Programme (ISSP) for 24 countries, we find that the association between gender attitudes and housework share became stronger over time in most countries, signifying that the Second Demographic Transition was in place. The results also show that the association varied across the 24 countries, reaching an equilibrium in many but at different stages. Our findings suggest that equilibria in the domestic division of labour take various forms and paces in the ISSP countries.

  11. Total population of the BRICS countries 2000-2030

    • statista.com
    • tokrwards.com
    • +1more
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.statista.com/statistics/254205/total-population-of-the-bric-countries/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  12. f

    Demographic transition and factors associated with remaining in place after...

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomohiro Morita; Shuhei Nomura; Tomoyuki Furutani; Claire Leppold; Masaharu Tsubokura; Akihiko Ozaki; Sae Ochi; Masahiro Kami; Shigeaki Kato; Tomoyoshi Oikawa (2023). Demographic transition and factors associated with remaining in place after the 2011 Fukushima nuclear disaster and related evacuation orders [Dataset]. http://doi.org/10.1371/journal.pone.0194134
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tomohiro Morita; Shuhei Nomura; Tomoyuki Furutani; Claire Leppold; Masaharu Tsubokura; Akihiko Ozaki; Sae Ochi; Masahiro Kami; Shigeaki Kato; Tomoyoshi Oikawa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionDemographic changes as a result of evacuation in the acute phase of the 2011 Fukushima nuclear disaster are not well evaluated. We estimated post-disaster demographic transitions in Minamisoma City—located 14–38 km north of the nuclear plant—in the first month of the disaster; and identified demographic factors associated with the population remaining in the affected areas.Materials and methodsWe extracted data from the evacuation behavior survey administered to participants in the city between July 11, 2011 and April 30, 2013. Using mathematical models, we estimated the total population in the city after the disaster according to sex, age group, and administrative divisions of the city. To investigate factors associated with the population remaining in place after the disaster, a probit regression model was employed, taking into account sex, age, pre-disaster dwelling area, and household composition.ResultsThe overall population decline in Minamisoma City peaked 11 days after the disaster, when the population reached 7,107 people—11% of the pre-disaster level. The remaining population levels differed by area: 1.1% for mandatory evacuation zone, 12.5% for indoor sheltering zone, and 12.6% for other areas of the city. Based on multiple regression analyses, higher odds for remaining in place were observed among men (odds ratio 1.72 [95% confidence intervals 1.64–1.85]) than women; among people aged 40–64 years (1.40 [1.24–1.58]) than those aged 75 years or older; and among those living with the elderly, aged 70 years or older (1.18 [1.09–1.27]) or those living alone (1.71 [1.50–1.94]) than among those who were not.DiscussionDespite the evacuation order, some residents of mandatory evacuation zones remained in place, signaling the need for preparation to respond to their post-disaster needs. Indoor sheltering instructions may have accelerated voluntary evacuation, and this demonstrates the need for preventing potentially disorganized evacuation in future nuclear events.

  13. d

    Accounting for uncertainty in dormant life stages in stochastic demographic...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Oct 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Paniw; Pedro F. Quintana-Ascencio; Fernando Ojeda; Roberto Salguero-Gómez (2016). Accounting for uncertainty in dormant life stages in stochastic demographic models [Dataset]. http://doi.org/10.5061/dryad.rq7t3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 11, 2016
    Dataset provided by
    Dryad
    Authors
    Maria Paniw; Pedro F. Quintana-Ascencio; Fernando Ojeda; Roberto Salguero-Gómez
    Time period covered
    Oct 11, 2016
    Description

    dataDroso - census dataDemographic transitions of Drosophyllum lusitanicum populations recorded in annual censuses (from 2011 to 2015) in five populations. These data are used to quantify vital rates of above-ground individuals.dataDroso.csvdataDrosoSB - seed bankSeed fates (in a binary format) inferred from two experiments. These data are used to quantify the transitions related to the seed bank and associated parameter uncertainties.dataDrosoSB.csvBayModel - Bayesian vital rate GLMMsExecutes and saves the results of a Bayesian model quantifying all vital rates; illustrates basic diagnostics that can be run on the results of an MCMC run (i.e., the posterior parameter distribution) to check for model convergence and autocorrelation of the posterior samples.BayModel.RmcmcOUT - parameter samplesIn case the reader wishes to forego the step of fitting the Bayesian models, we provided a mcmcOUT.csv file with 1000 posterior parameter values for each of the parameters estimated with Bayesian m...

  14. d

    Data from: The niche through time: Considering phenology and demographic...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun (2025). The niche through time: Considering phenology and demographic stages in plant distribution models [Dataset]. http://doi.org/10.5061/dryad.sn02v6xct
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Damaris Zurell; Niklaus Zimmermann; Philipp Brun
    Description

    Species distribution models (SDMs) are widely used to infer species-environment relationships, predict spatial distributions, and characterise species’ environmental niches. While the importance of space and spatial scales is widely acknowledged in SDM applications, temporal components of the niche are rarely addressed. We discuss how phenology and demographic stages affect model inference in plant SDMs. Ignoring conspicuousness and timing of phenological stages may bias niche estimates through increased observer bias, while ignoring stand age may bias niche estimates through temporal mismatches with environmental variables, especially during times of rapid global warming. We present different methods to consider phenology and demographic stages in plant SDMs, including the selection of causal, spatiotemporally explicit predictors, and the calibration of stage-specific SDMs. Based on a case study with citizen science data, we illustrate how spatiotemporal SDMs provide deeper insights on..., We conducted a keyword-based search in the Web of Science to quantify how often temporal components related to phenology and demographic stages are explicitly considered in plant SDMs. A full list of keywords is provided in the Supporting Information Table S1. We used a nested set of keywords to identify all studies that mentioned SDMs (or common synonyms), were focused on plants, and were listing relevant keywords related to phenology or to demographic stages, respectively. The search was carried out on 5-Oct-2023 and was restricted to English-language journal articles in the period 1945-2022 (no studies using SDMs were published before that start year). Overall, we found more than 40,000 articles mentioning SDM and over 10,000 articles in our refined search for plant SDMs, with a strong increase in the number of articles over time. Among these, phenology (or related search terms) was mentioned in 970 articles and demographic stages (or related terms) in 1188 articles, each averaging c..., , # The niche through time: considering phenology and demographic stages in plant distribution models

    https://doi.org/10.5061/dryad.sn02v6xct

    Description of the data and file structure

    Columns from WoS (Web of Science) search – these are identical in both excel sheets

    These columns are the standard columns provided as WoS search output. If the entries contain "n/a", then no information was provided by WoS because those items are not applicable. For example, a journal article does not have any entries for book authors.

    ColumnExplanation
    Publication TypeType of publication: J .. Journal article
    AuthorsAuthors
    Book AuthorsBook Authors
    Book EditorsBook Editors ...
  15. f

    Data from: An update on aging and dementia in Chile

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patricio Fuentes; Cecilia Albala (2023). An update on aging and dementia in Chile [Dataset]. http://doi.org/10.6084/m9.figshare.7518206.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Patricio Fuentes; Cecilia Albala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chile
    Description

    Chile is in an advanced demographic transition stage with the population over 60 years of age representing 15% of the total population and whose number of elderly has more than doubled between 1990 and 2014. Rapid economic advancement has promoted significant changes in social organization to which the country is not accustomed. The mental health problems of the elderly are particularly challenging to the country's present social and health structures. The prevalence of dementia in people over 60 years exceeds 8% and is even higher in the rural population. There is more training on dementia in the local medical and scientific community, increased awareness within the civilian community but insufficient responsiveness from the state to the broad diagnostic and therapeutic requirements of patients and caregivers. The objective of the present study was to provide an update of the information on dementia in the context of the ageing process in Chile.

  16. Data from: Demographic correction – a tool for inference from individuals to...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, txt
    Updated Jun 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Klimeš; Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben (2022). Data from: Demographic correction – a tool for inference from individuals to populations [Dataset]. http://doi.org/10.5061/dryad.p8cz8w9s6
    Explore at:
    txt, binAvailable download formats
    Dataset updated
    Jun 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Adam Klimeš; Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Estimation of responses of organisms to their environment using experimental manipulations, and comparison of such responses across sets of species, is one of the primary tools in ecology research. The most common approach is to compare response of a single life stage of species to an environmental factor and use this information to draw conclusions about population dynamics of these species. Such approach ignores the fact that interspecific fitness differences measured at a single life stage are not directly comparable and cannot be extrapolated to lifetime fitness of individuals and thus species' population dynamics. Comparison of one life stage only while omitting demographic information can strongly bias conclusions, both in experimental studies with a few species, and in large comparative studies.

    We illustrate the effect of this omission using both an exaggerated fictitious example, and biological data on congeneric species differing in their demography. We are showing, taking simple assumptions, that different demography can completely revert conclusions reached by a comparison based on an experiment focusing on a single life stage.

    We show that a "demographic correction", namely translating observed effects into differences in outcomes of demographic models, is a solution to this problem. It requires turning the detected effects from the experiment into changes of transition probabilities of projection matrix models. Although such solution is limited by the low number of species with demographic data available, we believe that existing data (and data likely to be collected in the near future) permit at least approximate handling of this problem.

  17. d

    Data from: Life stage hypothesis modeling determines insect vulnerability...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J. Simone Durney; Diane M. Debinski; Stephen F. Matter (2024). Life stage hypothesis modeling determines insect vulnerability during developmental life stages to climate extremes [Dataset]. http://doi.org/10.5061/dryad.w0vt4b92t
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    J. Simone Durney; Diane M. Debinski; Stephen F. Matter
    Description

    Butterflies are important bioindicators that can be used to monitor the effects of climate change, particularly in montane environments. Changes in butterfly population size over time, reflective of indicator life stages, can signal changes that have occurred or are occurring in their environment indicating ecosystem health. From the perspective of understanding butterflies as bioindicators in these systems, it is essential to identify influential environmental variables at each life stage that have the greatest effect on population dynamics. Life stage hypothesis modeling was used to assess the effects of multiple temperature and precipitation metrics on the population growth rate of a Parnassius clodius butterfly population from 2009 to 2018. Extreme maximum temperatures during the larval-pupal life stages were identified to have a significant negative effect on population growth rate. We speculate that higher temperatures during the spring ephemeral host plant’s flowering, and P. clo..., Butterfly Mark-Recapture Mark-recapture methods were used to study a population of P. clodius at Pilgrim Creek in Grand Teton National Park, Wyoming, USA across annual flight seasons between 2009 and 2018 during June and July. Surveys were not carried out in 2012 and 2013. Six 50m x 50m plots a minimum of 100m apart, were located using GPS units, flagged prior to the flight season of P. clodius, and surveyed each year. Survey plots were initially established in 2000 in an effort to balance increasing the area sampled, decreasing the number of recaptures, and maintaining independent sampling within a single meadow (Auckland et al. 2004). Mark-recapture surveys began a few days after the beginning of the flight season and continued until only one or two butterflies per plot were caught during a survey period. Plots were monitored daily if weather permitted throughout each flight season. Surveys were conducted when temperatures were above 21°C, wind was <16kmh-1, and clouds were not obs..., , # Life stage hypothesis modeling determines insect vulnerability during developmental life stages to climate extremes

    https://doi.org/10.5061/dryad.w0vt4b92t

    Description of the data and file structure

    Files and variables

    File: p.clodius_environmental.variables.binned.by.lifestage_2009-2021_SR.BC_Jan2023_ALL_metric.csv

    Description:Â Mark-Recapture-Release data for Parnassius clodius butterflies in Pilgrim Creek, Wyoming, U.S.A. from 2009-2011 and 2014-2018

    Variables
    • Year: calendar year
    • effort.num.surveys: number of surveys conducted per year
    • caught: total number of butterflies caught per year
    • caught.effort: total number of butterflies caught per year divided by the total number of surveys conducted per year
    • caught.recap: total number of butterflies caught, including recaptures, per year
    • est.popsize: estimated population size using Rmark
    • logNt.caught: log transformation of the total number of butter...
  18. d

    Data from: A spatially explicit hierarchical model to characterize...

    • datadryad.org
    • search.dataone.org
    zip
    Updated Aug 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven P. Campbell; Erin R. Zylstra; Catherine R. Darst; Roy C. Averill-Murray; Robert J. Steidl (2018). A spatially explicit hierarchical model to characterize population viability [Dataset]. http://doi.org/10.5061/dryad.v0q5035
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 10, 2018
    Dataset provided by
    Dryad
    Authors
    Steven P. Campbell; Erin R. Zylstra; Catherine R. Darst; Roy C. Averill-Murray; Robert J. Steidl
    Time period covered
    Aug 9, 2018
    Area covered
    Arizona
    Description

    Data and R code for spatial PVA of Sonoran desert tortoisesThis zip directory contains the data and R code required to reproduce the analyses in the associated paper.Campbell_et_al_data_and_R_code.zip

  19. o

    Wages of men, women, and all the others

    • openicpsr.org
    Updated Mar 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Öberg (2025). Wages of men, women, and all the others [Dataset]. http://doi.org/10.3886/E223202V2
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Lund University
    Authors
    Stefan Öberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Wages earned by men are often used as an indicator of the material standard of living (MSoL). However, this indicator relies on several assumptions when used for comparisons across time and space. Considering these assumptions will improve estimates of the MSoL from wages. One necessary assumption is that households in the compared populations relied on the primary income of the male head of household to a comparable degree. I demonstrate that the degree of reliance on the male income was closely associated with the complexity of households within the population. Nuclear households—typical of English-speaking countries—were more reliant on the male income than more complex households found elsewhere. Consequently, estimates based on male wages are less accurate for populations with complex households, likely underestimating their MSoL. While the complexity of households in historical populations is seldom known, it can be predicted using demographic and economic indicators. I conclude that populations at similar stages of industrialization and the demographic transition are the most comparable when using male wages to estimate their MSoL. Further, I use a reductive model to show that a household’s MSoL is determined by three factors: time spent on productive work, the market wage for men, and the female/male wage ratio. My analysis shows that including the female/male wage ratio does not change the ranking of the MSoL based on male wages. Nonetheless, I argue that there are compelling reasons to expect the wage ratio to be a useful addition when comparing the MSoL of historical populations.(Abstract of the associated article.)

  20. f

    Prevalence and patterns of multi-morbidity among 30-69 years old population...

    • figshare.com
    xls
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohini; Panniyammakal Jeemon (2020). Prevalence and patterns of multi-morbidity among 30-69 years old population of rural Pathanamthitta, a district of Kerala, India: A cross-sectional study [Dataset]. http://doi.org/10.6084/m9.figshare.12494681.v4
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    figshare
    Authors
    Rohini; Panniyammakal Jeemon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kerala, Pathanamthitta
    Description

    Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.

    Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.

    Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.

    Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.

    Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d

Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Service
Description

This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

Search
Clear search
Close search
Google apps
Main menu