79 datasets found
  1. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  2. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Florida International University
    University of Hawaiʻi at Mānoa
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  3. f

    Data from: Demographic dynamics and urban space production in Porto...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amanda Cabette; Tânia Marques Strohaecker (2023). Demographic dynamics and urban space production in Porto Alegre/Brazil [Dataset]. http://doi.org/10.6084/m9.figshare.7507439.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Amanda Cabette; Tânia Marques Strohaecker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, Porto Alegre
    Description

    Abstract The demographic dynamics of the city of Porto Alegre (Southern Brazil) was characterized, in the last decade, by a reduction in fertility rates, low population growth and an increasing number of elderly people, according to data from the IBGE Census (2010). This indicates, therefore, a demographic transition phase. This study aims to relate the demographic transition to the production of the urban space of Porto Alegre in the intercensal period from 2000 to 2010. Urban space production, specifically property development, is analyzed here through the identification of the relationship between urban growth/population growth and the city’s spatial configuration trends.

  4. f

    Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Man-Yee Kan; Kamila Kolpashnikova (2023). Table1_Three-Stage Transitional Theory: Egalitarian Gender Attitudes and Housework Share in 24 Countries.pdf [Dataset]. http://doi.org/10.3389/fsoc.2021.700301.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Man-Yee Kan; Kamila Kolpashnikova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How does the association between gender attitudes and housework share vary across countries and time? We examine the second demographic transition as it unmasks in the association between gender attitudes and housework participation. Using data of the 2002 and 2012 International Social Survey Programme (ISSP) for 24 countries, we find that the association between gender attitudes and housework share became stronger over time in most countries, signifying that the Second Demographic Transition was in place. The results also show that the association varied across the 24 countries, reaching an equilibrium in many but at different stages. Our findings suggest that equilibria in the domestic division of labour take various forms and paces in the ISSP countries.

  5. Countries with the largest population 2025

    • ai-chatbox.pro
    • statista.com
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistik%2Fdaten%2Fstudie%2F1722%2Fumfrage%2Fbevoelkerungsreichste-laender-der-welt%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  6. f

    Data from: Dynamic interplay of kinship and net-fertility: a comprehensive...

    • tandf.figshare.com
    docx
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roxana Arana-Ovalle; Lisa Dillon; Alejandro Murua; Francisco José Zamudio-Sánchez (2025). Dynamic interplay of kinship and net-fertility: a comprehensive analysis across demographic transitions in Mexico [Dataset]. http://doi.org/10.6084/m9.figshare.29370934.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Roxana Arana-Ovalle; Lisa Dillon; Alejandro Murua; Francisco José Zamudio-Sánchez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    This study explores the relationship between grandparental co-residence and net fertility – measured as the number of children under five – in Mexico across three key phases of its demographic transition: 1930 (pre-transitional), 1970 (population growth), and 2015 (fertility decline). Using census microdata and Poisson and multinomial regression models, we assess how intergenerational household structures interact with family socioeconomic status and cultural context to influence fertility outcomes. A central innovation is the use of a reconstructed 10% sample of the 1930 census, complemented by an imputation strategy to infer kinship ties not recorded in the original data. This enabled one of the earliest large-scale analyses of family co-residence and reproduction in historical Mexico. Findings reveal that the effects of grandparental co-residence vary by context. In 1930, cohabitation with grandmothers – especially in rural indigenous households – was associated with lower fertility, while cohabitation with grandfathers in non-indigenous rural areas corresponded to higher fertility. In 1970, amid pronatalist policies and economic growth, these effects weakened overall but persisted modestly in rural contexts. By 2015, co-residence – particularly with both grandparents – was associated with higher fertility and lower variability in fertility (CV), suggesting a stabilizing role in reproductive behavior. In contrast, households without grandparents exhibited lower fertility and greater heterogeneity, appearing to lead the shift toward reduced fertility. These findings illustrate how extended family structures both reflect and shape reproductive adaptation across shifting demographic contexts. By integrating evolutionary concepts such as cooperative breeding and social learning biases, the study offers insight into how kin networks can either support or constrain fertility depending on historical, socioeconomic, and cultural conditions. In doing so, it also contributes methodologically by addressing the complexity of nested and interactive effects – an essential step for understanding fertility dynamics in culturally diverse populations undergoing demographic transformation.

  7. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  8. Countries with the highest fertility rates 2025

    • ai-chatbox.pro
    • statista.com
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest fertility rates 2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F262884%2Fcountries-with-the-highest-fertility-rates%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.

  9. Total population of the BRICS countries 2000-2030

    • ai-chatbox.pro
    • statista.com
    Updated Jun 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F9896%2Fchina-statista-dossier%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  10. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  11. n

    Data from: Population responses to perturbations: the importance of...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    zip
    Updated Jan 9, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton (2012). Population responses to perturbations: the importance of trait-based analysis illustrated through a microcosm experiment [Dataset]. http://doi.org/10.5061/dryad.68sd84vh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2012
    Dataset provided by
    University of Cambridge
    University of Leeds
    Imperial College London
    Authors
    Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics.

  12. o

    Wages of men, women, and others

    • openicpsr.org
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Öberg (2025). Wages of men, women, and others [Dataset]. http://doi.org/10.3886/E223202V1
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Lund University
    Authors
    Stefan Öberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Wages earned by men are often used as an indicator of the material standard of living (MSoL). However, this indicator relies on several assumptions when used for comparisons across time and space. Considering these assumptions will improve estimates of the MSoL from wages. One necessary assumption is that households in the compared populations relied on the primary income of the male head of household to a comparable degree. I demonstrate that the degree of reliance on the male income was closely associated with the complexity of households within the population. Nuclear households—typical of English-speaking countries—were more reliant on the male income than more complex households found elsewhere. Consequently, estimates based on male wages are less accurate for populations with complex households, likely underestimating their MSoL. While the complexity of households in historical populations is seldom known, it can be predicted using demographic and economic indicators. I conclude that populations at similar stages of industrialization and the demographic transition are the most comparable when using male wages to estimate their MSoL. Further, I use a reductive model to show that a household’s MSoL is determined by three factors: time spent on productive work, the market wage for men, and the female/male wage ratio. My analysis shows that including the female/male wage ratio does not change the ranking of the MSoL based on male wages. Nonetheless, I argue that there are compelling reasons to expect the wage ratio to be a useful addition when comparing the MSoL of historical populations.(Abstract of the associated article.)

  13. Years taken for the world population to grow by one billion 1803-2088

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Years taken for the world population to grow by one billion 1803-2088 [Dataset]. https://www.statista.com/statistics/1291648/time-taken-for-global-pop-grow-billion/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1803 - 2015
    Area covered
    World
    Description

    Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.

  14. n

    Data from: Patterns of physiological decline due to age and selection in...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Aug 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parvin Shahrestani; Julian B. Wilson; Laurence D. Mueller; Michael R. Rose (2016). Patterns of physiological decline due to age and selection in Drosophila melanogaster [Dataset]. http://doi.org/10.5061/dryad.qb509
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 22, 2016
    Dataset provided by
    University of California, Irvine
    Authors
    Parvin Shahrestani; Julian B. Wilson; Laurence D. Mueller; Michael R. Rose
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In outbred sexually reproducing populations, age-specific mortality rates reach a plateau in late life following the exponential increase in mortality rates that marks aging. Little is known about what happens to physiology when cohorts transition from aging to late life. We measured age-specific values for starvation resistance, desiccation resistance, time-in-motion and geotaxis in ten Drosophila melanogaster populations: five populations selected for rapid development and five control populations. Adulthood was divided into two stages, the aging phase and the late-life phase according to demographic data. Consistent with previous studies, we found that populations selected for rapid development entered the late-life phase at an earlier age than the controls. Age-specific rates of change for all physiological phenotypes showed differences between the aging phase and the late-life phase. This result suggests that late life is physiologically distinct from aging. The ages of transitions in physiological characteristics from aging to late life statistically match the age at which the demographic transition from aging to late life occurs, in all cases but one. These experimental results support evolutionary theories of late life that depend on patterns of decline and stabilization in the forces of natural selection.

  15. n

    Data from: Trait-demography relationships underlying small mammal population...

    • narcis.nl
    • datadryad.org
    Updated Dec 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    van Benthem, Koen J.; Froy, Hannah; Coulson, Tim; Getz, Lowell L.; Oli, Madan K.; Ozgul, Arpat (2016). Data from: Trait-demography relationships underlying small mammal population fluctuations [Dataset]. http://doi.org/10.5061/dryad.8vb83
    Explore at:
    Dataset updated
    Dec 27, 2016
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    van Benthem, Koen J.; Froy, Hannah; Coulson, Tim; Getz, Lowell L.; Oli, Madan K.; Ozgul, Arpat
    Description

    Large-scale fluctuations in abundance are a common feature of small mammal populations and have been the subject of extensive research. These demographic fluctuations are often associated with concurrent changes in the average body mass of individuals, sometimes referred to as the ‘Chitty effect’. Despite the long-standing recognition of this phenomenon, an empirical investigation of the underlying coupled dynamics of body mass and population growth has been lacking. Using long-term life-history data combined with a trait-based demographic approach, we examined the relationship between body mass and demography in a small mammal population that exhibits non-cyclic, large-scale fluctuations in abundance. We used data from the male segment of a 25-year study of the monogamous prairie vole, Microtus ochrogaster, in Illinois, USA. Specifically, we investigated how trait–demography relationships and trait distributions changed between different phases of population fluctuations, and the consequences of these changes for both trait and population dynamics. We observed phase-specific changes in male adult body mass distribution in this population of prairie voles. Our analyses revealed that these changes were driven by variation in ontogenetic growth, rather than selection acting on the trait. The resulting changes in body mass influenced most life-history processes, and these effects varied among phases of population fluctuation. However, these changes did not propagate to affect the population growth rate due to the small effect of body mass on vital rates, compared to the overall differences in vital rates between phases. The increase phase of the fluctuations was initiated by enhanced survival, particularly of juveniles and fecundity, whereas the decline phase was driven by an overall reduction in fecundity, survival and maturation rates. Our study provides empirical support, as well as a potential mechanism, underlying the observed trait changes accompanying population fluctuations. Body size dynamics and population fluctuations resulted from different life-history processes. Therefore, we conclude that body size dynamics in our population do not drive the observed population dynamics. This more in-depth understanding of different components of small mammal population fluctuations will help us to better identify the mechanistic drivers of this interesting phenomenon.

  16. d

    Demographic analysis for article Hurricane-induced demographic changes in a...

    • datadryad.org
    • dataone.org
    zip
    Updated Aug 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raisa Hernández-Pacheco; Dana O Morcillo; Ulrich K Steiner; Angelina V Ruiz-Lambides; Kristine L Grayson (2020). Demographic analysis for article Hurricane-induced demographic changes in a nonhuman primate population [Dataset]. http://doi.org/10.5061/dryad.5qfttdz2b
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    Dryad
    Authors
    Raisa Hernández-Pacheco; Dana O Morcillo; Ulrich K Steiner; Angelina V Ruiz-Lambides; Kristine L Grayson
    Time period covered
    2020
    Description

    The demographic dataset of Cayo Santiago rhesus macaques was shared by the Caribbean Primate Research Center, University of Puerto Rico.

  17. f

    Prevalence and patterns of multi-morbidity among 30-69 years old population...

    • figshare.com
    xls
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohini; Panniyammakal Jeemon (2020). Prevalence and patterns of multi-morbidity among 30-69 years old population of rural Pathanamthitta, a district of Kerala, India: A cross-sectional study [Dataset]. http://doi.org/10.6084/m9.figshare.12494681.v4
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    figshare
    Authors
    Rohini; Panniyammakal Jeemon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.

    Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.

    Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.

    Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.

    Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern

  18. B

    Data from: Demographic mechanisms and anthropogenic drivers of contrasting...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon English; Scott Wilson; Qing Zhao; Christine Bishop; Alison Moran (2024). Demographic mechanisms and anthropogenic drivers of contrasting population dynamics of hummingbirds [Dataset]. http://doi.org/10.5683/SP3/LR2Y4C
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 11, 2024
    Dataset provided by
    Borealis
    Authors
    Simon English; Scott Wilson; Qing Zhao; Christine Bishop; Alison Moran
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LR2Y4Chttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LR2Y4C

    Description

    AbstractConserving species requires knowledge of demographic rates (survival, recruitment) that govern population dynamics to allow the allocation of limited resources to the most vulnerable stages of target species' life cycles. Additionally, quantifying drivers of demographic change facilitates the enactment of specific remediation strategies. However, knowledge gaps persist in how similar environmental changes lead to contrasting population dynamics through demographic rates. For sympatric hummingbird species, the population of urban-associated partial-migrant Anna's hummigbird (Calypte anna) has increased, yet the populations of Neotropical migrants including rufous, calliope, and black-chinned hummingbirds have decreased. Here, we developed an integrated population model to jointly analyze 25 years of mark-recapture data and population survey data for these four species. We examined the contributions of demographic rates on population growth and evaluated the effects of anthropogenic stressors including human population density and crop cover on demographic change in relation to species' life histories. While recruitment appeared to drive the population increase of urban-associated Anna's hummingbirds, decreases in juvenile survival contributed most strongly to population declines of Neotropical migrants and highlight a potentially vulnerable phase in their life-history. Moreover, rufous hummingbird adult and juvenile survival rates were negatively impacted by human population density. Mitigating threats associated with intensively modified anthropogenic environments is a promising avenue for slowing further hummingbird population loss. Overall, our model grants critical insight into how anthropogenic modification of habitat affects the population dynamics of species of conservation concern. MethodsThis R data file contains a named list for each species in our study. It has been processed to remove covariates and data that are not public domain but are available for download at the links provided (indicated with * in the readme file). Each species list contains mark-recapture records (y), the known-state records (z), number of years spanned by the analysis (n.years), numbers banded individuals (n.ind), banding station membership (sta), number of banding stations (n.sta), year of first encounter for each individual (first), year of last possible encounter of each individual if it were to be alive (last), first and last years of mark recapture data (first_yr / last_yr), sex (1 = male, 2 = female) and age (1 = juvenile, 2 = adult) membership for each individual, the observed residency information for each individual in each year (r), the partially observed residency state information for each individual (u), the standardized human population density and crop data in the 3 kilometers around each banding station (HPD / crop), the unstandardized HPD and crop data (HPD_raw / crop_raw), the number of days of operational banding activity at each station each year (effort), and indicator for each station and year signifying whether banding occurred on at least two occasions separated by more than 5 days that year (kappa_shrink), the BBS survey year (year), an indicator of whether the BBS surveyor was suveying on their first year or not (firstyr), the number of BBS surveys (ncounts), the species tally on a given survey (count), the number of individual transects surveyed over the study period (nrte), the BBS transect membership for each count (rte), the number of observers contributing data over the study period (nobserver), the anonymized observer ID on a given transect for each count (rte.obser), and the initial abundance estimate given as the mean count across all transects and years, inflated by 100 for precise estimation of demographic rates (lam0). Usage notesData can be opened in R and analyzed using Nimble.

  19. Fertility rate of the BRICS countries 2022

    • ai-chatbox.pro
    • statista.com
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the BRICS countries 2022 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F741645%2Ffertility-rate-of-the-bric-countries%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India, Russia, South Africa, Brazil
    Description

    While the BRICS countries are grouped together in terms of economic development, demographic progress varies across these five countries. In 2019, India and South Africa were the only BRICS countries with a fertility rate above replacement level (2.1 births per woman). Fertility rates since 2000 show that fertility in China and Russia has either fluctuated or remained fairly steady, as these two countries are at a later stage of the demographic transition than the other three, while Brazil has reached this stage more recently. Fertility rates in India are following a similar trend to Brazil, while South Africa's rate is progressing at a much slower pace. Demographic development is inextricably linked with economic growth; for example, as fertility rates drop, female participation in the workforce increases, as does the average age, which then leads to higher productivity and a more profitable domestic market.

  20. d

    The diversity of population responses to environmental change

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jan 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading (2019). The diversity of population responses to environmental change [Dataset]. http://doi.org/10.5061/dryad.d5f54s7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 3, 2019
    Dataset provided by
    Dryad
    Authors
    Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading
    Time period covered
    2019
    Area covered
    Global
    Description

    LifeTablesLife tables for 24 species of terrestrial vertebrates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d

Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Service
Description

This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

Search
Clear search
Close search
Google apps
Main menu