70 datasets found
  1. App User Dataset

    • kaggle.com
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalle Fischer (2022). App User Dataset [Dataset]. https://www.kaggle.com/datasets/kallefischer/app-user-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kalle Fischer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset

    This dataset contains 6 columns and 10k rows about the demographics of the users of an app. UID - User ID, unique identifier for every app user. reg_date - Date that each user registered. device - Operating system of the user. Gender - Gender of the user Country - Country where the user downloaded the app. Age - Age of the user.

  2. d

    Basic Demographics Age and Gender - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Basic Demographics Age and Gender - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/basic-demographics-age-and-gender-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima

  3. d

    Factori USA Consumer Graph Data | socio-demographic, location, interest and...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    Consumer Graph Use Cases:

    360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori Consumer Data graph you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of Consumer Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_desc...

  4. f

    Is Demography Destiny? Application of Machine Learning Techniques to...

    • plos.figshare.com
    • figshare.com
    docx
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Luo; Thin Nguyen; Melanie Nichols; Truyen Tran; Santu Rana; Sunil Gupta; Dinh Phung; Svetha Venkatesh; Steve Allender (2023). Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset [Dataset]. http://doi.org/10.1371/journal.pone.0125602
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Wei Luo; Thin Nguyen; Melanie Nichols; Truyen Tran; Santu Rana; Sunil Gupta; Dinh Phung; Svetha Venkatesh; Steve Allender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  5. H

    Worldwide Mobile App User Behavior Dataset

    • dataverse.harvard.edu
    doc, xlsx
    Updated Sep 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2014). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    doc(56320), xlsx(7037534)Available download formats
    Dataset updated
    Sep 28, 2014
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    Worldwide
    Description

    We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

  6. Data and code for: Generation and applications of simulated datasets to...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, zip
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Silk; Matthew Silk; Olivier Gimenez; Olivier Gimenez (2023). Data and code for: Generation and applications of simulated datasets to integrate social network and demographic analyses [Dataset]. http://doi.org/10.5061/dryad.m0cfxpp7s
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Matthew Silk; Matthew Silk; Olivier Gimenez; Olivier Gimenez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Social networks are tied to population dynamics; interactions are driven by population density and demographic structure, while social relationships can be key determinants of survival and reproductive success. However, difficulties integrating models used in demography and network analysis have limited research at this interface. We introduce the R package genNetDem for simulating integrated network-demographic datasets. It can be used to create longitudinal social networks and/or capture-recapture datasets with known properties. It incorporates the ability to generate populations and their social networks, generate grouping events using these networks, simulate social network effects on individual survival, and flexibly sample these longitudinal datasets of social associations. By generating co-capture data with known statistical relationships it provides functionality for methodological research. We demonstrate its use with case studies testing how imputation and sampling design influence the success of adding network traits to conventional Cormack-Jolly-Seber (CJS) models. We show that incorporating social network effects in CJS models generates qualitatively accurate results, but with downward-biased parameter estimates when network position influences survival. Biases are greater when fewer interactions are sampled or fewer individuals are observed in each interaction. While our results indicate the potential of incorporating social effects within demographic models, they show that imputing missing network measures alone is insufficient to accurately estimate social effects on survival, pointing to the importance of incorporating network imputation approaches. genNetDem provides a flexible tool to aid these methodological advancements and help researchers test other sampling considerations in social network studies.

  7. Eswatini - Population Counts

    • data.amerigeoss.org
    • data.humdata.org
    geotiff
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). Eswatini - Population Counts [Dataset]. https://data.amerigeoss.org/dataset/worldpop-population-counts-for-eswatini
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Eswatini
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  8. o

    School information and student demographics

    • data.ontario.ca
    • datasets.ai
    • +1more
    xlsx
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education (2025). School information and student demographics [Dataset]. https://data.ontario.ca/dataset/school-information-and-student-demographics
    Explore at:
    xlsx(1565910), xlsx(1550796), xlsx(1566878), xlsx(1565304), xlsx(1562805), xlsx(1459001), xlsx(1462006), xlsx(1460629), xlsx(1500842), xlsx(1482917), xlsx(1547704), xlsx(1567330), xlsx(1580734), xlsx(1462064)Available download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Education
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Jun 6, 2025
    Area covered
    Ontario
    Description

    Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools.

    How Are We Protecting Privacy?

    Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented.

      * Percentages depicted as 0 may not always be 0 values as in certain situations the values have been randomly rounded down or there are no reported results at a school for the respective indicator. * Percentages depicted as 100 are not always 100, in certain situations the values have been randomly rounded up.
    The school enrolment totals have been rounded to the nearest 5 in order to better protect and maintain student privacy.

    The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible.

    This information is also available on the Ministry of Education's School Information Finder website by individual school.

    Descriptions for some of the data types can be found in our glossary.

    School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.

  9. d

    App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M...

    • datarade.ai
    .csv
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mfour (2023). App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M consumers, 3B+ events verified, US consumers | CCPA Compliant [Dataset]. https://datarade.ai/data-categories/app-data/datasets
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    mfour
    Area covered
    United States of America
    Description

    At MFour, our Behavioral Data stands out for its uniqueness and depth of insights. What makes our data genuinely exceptional is the combination of several key factors:

    • First-Party Opt-In Data: Our data is sourced directly from our opt-in panel of consumers who willingly participate in research and provide observed behaviors. This ensures the highest data quality and eliminates privacy concerns. CCPA compliant.

    • Unparalleled Data Coverage: With access to 3B+ billion events, we have an extensive pool of participants who allow us to observe their brick + mortar location visitation, app + web smartphone usage, or both. This large-scale coverage provides robust and reliable insights.

    • Our data is generally sourced through our Surveys On The Go (SOTG) mobile research app, where consumers are incentivized with cash rewards to participate in surveys and share their observed behaviors. This incentivized approach ensures a willing and engaged panel, leading to the highest-quality data.

    The primary use cases and verticals of our Behavioral Data Product are diverse and varied. Some key applications include:

    • Data Acquisition and Modeling: Our data helps businesses acquire valuable insights into consumer behavior and enables modeling for various research objectives.

    • Shopper Data Analysis: By understanding purchase behavior and patterns, businesses can optimize their strategies, improve targeting, and enhance customer experiences.

    • Media Consumption Insights: Our data provides a deep understanding of viewer behavior and patterns across popular platforms like YouTube, Amazon Prime, Netflix, and Disney+, enabling effective media planning and content optimization.

    • App Performance Optimization: Analyzing app behavior allows businesses to monitor usage patterns, track key performance indicators (KPIs), and optimize app experiences to drive user engagement and retention.

    • Location-Based Targeting: With our detailed location data, businesses can map out consumer visits to physical venues and combine them with web and app behavior to create predictive ad targeting strategies.

    • Audience Creation for Ad Placement: Our data enables the creation of highly targeted audiences for ad campaigns, ensuring better reach and engagement with relevant consumer segments.

    The Behavioral Data Product complements our comprehensive suite of data solutions in the broader context of our data offering. It provides granular and event-level insights into consumer behaviors, which can be combined with other data sets such as survey responses, demographics, or custom profiling questions to offer a holistic understanding of consumer preferences, motivations, and actions.

    MFour's Behavioral Data empowers businesses with unparalleled consumer insights, allowing them to make data-driven decisions, uncover new opportunities, and stay ahead in today's dynamic market landscape.

  10. w

    Immigration system statistics data tables

    • gov.uk
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UK
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional d

  11. A

    Population Data

    • data.amerigeoss.org
    • data.wu.ac.at
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Population Data [Dataset]. https://data.amerigeoss.org/dataset/population-data
    Explore at:
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Description

    Population and other demographic information is collected by the US Census Bureau.

    View the US Census Bureau's Quick Facts page about Bloomington, Indiana at https://www.census.gov/quickfacts

    The Demographic Profile and other data for Bloomington can be viewed or downloaded from the American FactFinder search tool: https://factfinder.census.gov/bkmk/cf/1.0/en/place/Bloomington city, Indiana/POPULATION/DECENNIAL_CNT

    The Census Bureau is creating a new platform for data. This site is in a preview stage and some parts are under construction. Here is a link for Bloomington: https://data.census.gov/cedsci/results/all?q=Bloomington%20city,%20Indiana&g=1600000US1805860&ps=app*from@SINGLE_SEARCH

    The City webpage for Census data contains other related information: https://bloomington.in.gov/about/census-data

  12. Mobile Application User Statistics

    • kaggle.com
    Updated Dec 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wolfgang (2018). Mobile Application User Statistics [Dataset]. https://www.kaggle.com/wolfgangb33r/usercount/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    wolfgang
    Description

    Context

    This data set contains some basic statistics about user count and user growth as well as crash count for a real mobile app. The dataset contains a basic timeseries of 1 hour resolution for a period of one week.

    Content

    The data set contains columns for total concurrent user count, new users acquired in that period of time, number of sessions and crash count.

    Acknowledgements

    This data set would not be available without the Real User Monitoring capabilities of Dynatrace and its flexibility to export and expose this data for scientific experiments.

    Inspiration

    The data set was intended to play around with seasonality, trend and prediction of timeseries.

  13. US Gross Rent ACS Statistics

    • kaggle.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics/versions/3
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    What you get:

    Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

    Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

    Gross Rent & Geographic Statistics:

    • Mean Gross Rent (double)
    • Median Gross Rent (double)
    • Standard Deviation of Gross Rent (double)
    • Number of Samples (double)
    • Square area of land at location (double)
    • Square area of water at location (double)

    Geographic Location:

    • Longitude (double)
    • Latitude (double)
    • State Name (character)
    • State abbreviated (character)
    • State_Code (character)
    • County Name (character)
    • City Name (character)
    • Name of city, town, village or CPD (character)
    • Primary, Defines if the location is a track and block group.
    • Zip Code (character)
    • Area Code (character)

    Abstract

    The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

    License

    Only proper citing is required please see the documentation for details. Have Fun!!!

    Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

    please note: it is my personal number and email is preferred

    Check our data's accuracy: Census Fact Checker

    Access all 325,272 location for Free Database Coupon Code:

    Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

    A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

  14. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  15. d

    Year, Month and Payment Application-wise UPI Apps Transaction Statistics

    • dataful.in
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year, Month and Payment Application-wise UPI Apps Transaction Statistics [Dataset]. https://dataful.in/datasets/413
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    UPI Transaction Volumes, UPI Transaction Values,
    Description

    The dataset contains year, month and payment application-wise UPI Apps Transaction Statistics like Customer Initiated Transactions, B2C Transactions, B2B Transactions and On-us Transactions Note: 1) Unified Payments Interface(UPI) is an instant real-time payment system developed by National Payments Corporation of India. The interface facilitates inter-bank peer-to-peer and person-to-merchant transactions 2) From January 2021 onwards, ‚On-us Transactions‚ in UPI that are not processed and settled through the UPI Central System is shown under ‚ On-us Transactions column 3) Apps which has volume less than 10,000 is included under‚ Other Apps. 4) App volume in table is basis the Payer App logic, i.e the financial transaction is attributed to the PSP in UPI on the Payer's side. 5) BHIM Volume is inclusive of *99# volume. 6) For WhatsApp, Maximum registered user base of hundred (100) million in UPI

  16. Data from: Sample demographics.

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jean M. Herrman; Jeanine S. Morey; Ryan Takeshita; Sylvain De Guise; Randall S. Wells; Wayne McFee; Todd Speakman; Forrest Townsend; Cynthia R. Smith; Teresa Rowles; Lori Schwacke (2023). Sample demographics. [Dataset]. http://doi.org/10.1371/journal.pone.0242273.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jean M. Herrman; Jeanine S. Morey; Ryan Takeshita; Sylvain De Guise; Randall S. Wells; Wayne McFee; Todd Speakman; Forrest Townsend; Cynthia R. Smith; Teresa Rowles; Lori Schwacke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic data for all samples including, sample location, sex, length and age estimates and associated age class from pulp:tooth area ratio, GLG or life history data. Calculated pulp:tooth area ratios are also listed. (XLSX)

  17. m

    Mexico Geodemographic Information Dataset

    • app.mobito.io
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Mexico Geodemographic Information Dataset [Dataset]. https://app.mobito.io/data-product/mexico-geodemographic-information-dataset
    Explore at:
    Dataset updated
    Feb 23, 2023
    Area covered
    Mexico
    Description

    This dataset offers valuable insights into the demographic profile of a specific population, with data on factors such as age, income, and gender distribution, as well as number of homes and spending habits categorized into major expenditure categories such as food, transportation, and healthcare. The data is geocoded using geohash7 (152.9m x 152.4m), providing a more accurate representation of the population distribution. This information is a valuable resource for companies, researchers, and policymakers looking to gain a deeper understanding of the economic and social landscape of a community. Utilizing this data, they can make informed decisions related to resource allocation, planning, and policy development, and tailor initiatives to effectively address the challenges and opportunities facing the population. The dataset can be provided by country, state, municipality, colony, zone, polygon, etc.

  18. m

    Guatemala Geodemographic Information Dataset

    • app.mobito.io
    Updated Mar 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Guatemala Geodemographic Information Dataset [Dataset]. https://app.mobito.io/data-product/guatemala-geodemographic-information-dataset
    Explore at:
    Dataset updated
    Mar 10, 2023
    Area covered
    Guatemala
    Description

    This dataset offers valuable insights into the demographic profile of a specific population, with data on factors such as age, income, and gender distribution. The data is geocoded using geohash7 (152.9m x 152.4m), providing a more accurate representation of the population distribution. This information is a valuable resource for companies, researchers, and policymakers looking to gain a deeper understanding of the economic and social landscape of a community. Utilizing this data, they can make informed decisions related to resource allocation, planning, and policy development, and tailor initiatives to effectively address the challenges and opportunities facing the population. The dataset can be provided by country, department, municipality, zone, polygon, etc.

  19. d

    Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data |...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data | Perfect for Historical Analysis & Easy Ingestion [Dataset]. https://datarade.ai/data-products/dataplex-all-cms-data-feeds-access-1519-reports-26b-row-dataplex
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    The All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.

    Dataset Overview:

    118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.

    25.8 Billion Rows of Data:

    • With over 25.8 billion rows of data, this dataset provides a comprehensive view of the U.S. healthcare system. This extensive volume of data allows for granular analysis, enabling users to uncover insights that might be missed in smaller datasets. The data is also meticulously cleaned and aligned, ensuring accuracy and ease of use.

    Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.

    Monthly Updates:

    • To ensure that users have access to the most current information, the dataset is updated monthly. These updates include new reports as well as revisions to existing data, making the dataset a continuously evolving resource that stays relevant and accurate.

    Data Sourced from CMS:

    • The data in this dataset is sourced directly from the Centers for Medicare & Medicaid Services (CMS). After collection, the data is meticulously cleaned and its attributes are aligned, ensuring consistency, accuracy, and ease of use for any application. Furthermore, any new updates or releases from CMS are automatically integrated into the dataset, keeping it comprehensive and current.

    Use Cases:

    Market Analysis:

    • The dataset is ideal for market analysts who need to understand the dynamics of the healthcare industry. The extensive historical data allows for detailed segmentation and analysis, helping users identify trends, market shifts, and growth opportunities. The comprehensive nature of the data enables users to perform in-depth analyses of specific market segments, making it a valuable tool for strategic decision-making.

    Healthcare Research:

    • Researchers will find the All CMS Data Feeds dataset to be a robust foundation for academic and commercial research. The historical data, combined with the breadth of coverage across various healthcare metrics, supports rigorous, in-depth analysis. Researchers can explore the effects of healthcare policies, study patient outcomes, analyze provider performance, and more, all within a single, comprehensive dataset.

    Performance Tracking:

    • Healthcare providers and organizations can use the dataset to track performance metrics over time. By comparing data across different periods, organizations can identify areas for improvement, monitor the effectiveness of initiatives, and ensure compliance with regulatory standards. The dataset provides the detailed, reliable data needed to track and analyze key performance indicators.

    Compliance and Regulatory Reporting:

    • The dataset is also an essential tool for compliance officers and those involved in regulatory reporting. With detailed data on provider performance, patient outcomes, and healthcare utilization, the dataset helps organizations meet regulatory requirements, prepare for audits, and ensure adherence to best practices. The accuracy and comprehensiveness of the data make it a trusted resource for regulatory compliance.

    Data Quality and Reliability:

    The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.

    Integration and Usability:

    Ease of Integration:

    • The dataset is provided in a CSV format, which is widely compatible with most data analysis tools and platforms. This ensures that users can easily integrate the data into their existing wo...
  20. c

    IOS application reviews dataset in English

    • crawlfeeds.com
    csv, zip
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS application reviews dataset in English [Dataset]. https://crawlfeeds.com/datasets/ios-application-reviews-dataset-in-english
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.

    Key Features:

    • Real user reviews from popular iOS apps
    • Star ratings from 1 to 5 stars
    • Review dates and timestamps
    • App store URLs and metadata
    • User demographics and location data
    • App version information
    • Review titles and detailed feedback

    Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.

    Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kalle Fischer (2022). App User Dataset [Dataset]. https://www.kaggle.com/datasets/kallefischer/app-user-dataset
Organization logo

App User Dataset

Analyze the users of your app

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Sep 7, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Kalle Fischer
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

About Dataset

This dataset contains 6 columns and 10k rows about the demographics of the users of an app. UID - User ID, unique identifier for every app user. reg_date - Date that each user registered. device - Operating system of the user. Gender - Gender of the user Country - Country where the user downloaded the app. Age - Age of the user.

Search
Clear search
Close search
Google apps
Main menu